
Cross-modal Image Synthesis within Dual-Energy X-ray Security Imagery

Brian K. S. Isaac-Medina1, Neelanjan Bhowmik1, Chris G. Willcocks1, Toby P. Breckon1,2

Department of {Computer Science1, Engineering2}, Durham University
Durham, UK

{brian.k.isaac-medina, neelanjan.bhowmik, christopher.g.willcocks, toby.breckon}@durham.ac.uk

Abstract
Dual-energy X-ray scanners are used for aviation secu-

rity screening given their capability to discriminate materi-
als inside passenger baggage. To facilitate manual opera-
tor inspection, a pseudo-colouring is assigned to the effec-
tive composition of the material. Recently, paired image to
image translation models based on conditional Generative
Adversarial Networks (cGAN) have shown to be effective
for image colourisation. In this work, we investigate the use
of such a model to translate from the raw X-ray energy re-
sponses (high, low, effective-Z) to the pseudo-coloured im-
ages and vice versa. Specifically, given N X-ray modalities,
we train a cGAN conditioned in N −m domains to gener-
ate the remaining m representation. Our method achieves a
mean squared error (MSE) of 16.5 and a structural similar-
ity index (SSIM) of 0.9815 when using the raw modalities
to generate the pseudo-colour representation. Additionally,
raw X-ray high energy, low energy and effective-Z projec-
tions were generated given the pseudo-colour image with
minimum MSE of 2.57, 5.63 and 1.43, and maximum SSIM
of 0.9953, 0.9901 and 0.9921. Furthermore, we assess the
quality of our synthesised pseudo-colour reconstructions by
measuring the performance of two object detection mod-
els originally trained on real X-ray pseudo-colour images
over our generated pseudo-colour images. Interestingly,
our generated pseudo-colour images obtain marginally im-
proved detection performance than the corresponding real
X-ray pseudo-colour images, showing that meaningful rep-
resentations are synthesized and that these reconstructions
are applicable for differing aviation security tasks.

1. Introduction

Identification of material composition plays an important
role in baggage security screening as it facilitates the
material-based detection of prohibited items [16,22]. A ma-
terial can be characterized by a mass attenuation coefficient
which describes how beams at different energy levels are
able to penetrate the material. In this sense, multiple en-

Figure 1. Exemplar multi-modal X-ray screening imagery.

ergy X-rays can be used to identify the composition of a
scanned object. Particularly, dual-energy X-ray imaging has
shown to be an effective technique for this task [30]. The
effective atomic number, effective-Z or Zeff, can be approx-
imated given two different energy projections between 20
and 200 keV [20]. Subsequently, a look-up table is usually
used to assign a material profile and hence corresponding
pseudo-colour/RGB to a value of Zeff, identifying between
organic (orange), metallic (blue) and inorganic (green) [1].
An example of such X-ray sub-modalities is shown in Fig. 1
where the high and low energy images can be further pro-
cessed, via the use of effective-Z, to create a corresponding
pseudo-coloured images [9].

The task of assigning an RGB colour to a greyscale (in-
tensity) value is known as image colourisation. It is an ill-
posed problem since the mapping from colour to greyscale
f : R3 → R is not injective; i.e. different RGB values may
have the same grey value. It has been shown that deep neu-
ral networks have good a performance for image colouri-
sation [4]. When paired data is available, a popular super-
vised architecture for this task is the pix2pix architecture



proposed by Isola et al. [12]. They use a conditional Gen-
erative Adversarial Network (cGAN) to generate an image
in a different domain than the input image. In this sense,
image colourisation is an image to image translation task
where the greyscale and the coloured representations of the
images are considered to belong to different domains. Since
high and low energy responses can be seen as greyscale in-
tensity images, cGAN can be used to translate between en-
ergy and coloured images.

Image pseudo-colourisation of dual-energy raw projec-
tions has been performed in recent years to aid the visual in-
spection of security imagery. However, recent works focus-
ing on automatic detection of threat items [2] have brought
the question as to whether the raw energy images encode
additional information that can be used for this purpose.
Bhowmik et al. [5] used the raw responses to train differ-
ent object detection algorithms. They found that the energy
responses can be used independently to detect objects of in-
terest, but the best results are obtained when detectors are
trained using the pseudo-coloured images, the energy re-
sponses and the Zeff mapping in conjunction. Furthermore,
they demonstrate that such models are transferable across
differing X-ray scanners [5]. Although several large-scale
X-ray baggage imagery datasets exist [11, 21, 29], raw X-
ray projections are not usually provided as it is not archived
by default in standard operational use.

In this context, this work investigates both the genera-
tion of pseudo-colour images from dual-energy X-ray se-
curity raw modalities (high energy, low energy and Zeff)
and the decomposition of these energy images from pseudo-
coloured images. Our contributions are as follows:

• use of a GAN-based image to image translation archi-
tecture [12] applied to the context of dual-energy X-ray
security imagery for the generation of high energy, low
energy and Zeff modalities from pseudo-colour X-ray
imagery and vice versa.

• the proposed use of two GAN generators for cross-
modality synthesis with multiple paired input and
output variants, namely, via input concatenation and
Siamese network output for each input modality. Max-
imal quality is obtained with the Siamese version of
the generator, with a mean squared error of 16.5 and
a structural similarity index measure of 0.9815 for the
generation of pseudo-coloured images from the raw X-
ray energy modalities.

• assessment of the performance of two object detection
models trained on real X-ray imagery when tested on
the GAN generated images. Interestingly, the perfor-
mance on the generated pseudo-colour images outper-
forms the real X-ray images, showing that meaningful
representations are learned with applications in down-
stream aviation security tasks.

2. Related Work
Earlier image colourisation techniques based on deep learn-
ing used plain convolutional neural networks in a super-
vised fashion [7, 31]. Isola et al. [12] proposed the pix2pix
architecture which uses a cGAN for general paired image-
to-image translation tasks. It is demonstrated that cGANs
can be used for image colourisation, where the original im-
age and its greyscale version are considered as paired sam-
ples. A tailored version of pix2pix for image colourisation is
explored by Nazeri et al. [23]. Image colourisation has also
been used to translate from a single-valued domain, such as
infrared [18] and radar [25], to a coloured domain. For a
comprehensive review on image colourisation, see Anwar
et al. [4].

Colourisation and enhancement of dual-energy X-ray
imagery have been investigated in order to improve detec-
tion of threat items [8, 15]. However, to the best of our
knowledge, this is the first work that aims to reconstruct
the pseudo-colouring image from the raw X-ray projections
and to recover the energy responses from the pseudo-colour
image.

3. Dual-energy X-ray Imaging
X-ray images are formed by measuring the transmitted irra-
diance I of a beam with energy E through a material with
thickness T and atomic number Z. This resulting irradiance
I is given by the Beer’s law:

I = I0e
−µ(E,Z)T , (1)

where µ is the attenuation coefficient which depends on the
material and the energy of the beam. It is noted from Eq. (1)
that the transmitted irradiance I is always less or equal to I0,
meaning that thicker objects appear darker in the resulting
image, as seen in Fig. 1. Since I0 and I are known, we can
obtain the expression:

µ(E,Z)T = ln

(
I

I0

)
. (2)

For energies less than 200 keV, µ can be decomposed
into the attenuation coefficients µp and µc dominated by the
photoelectric and the Compton scattering effects [20], i.e.,

µ(E,Z) = µp(E,Z) + µc(E,Z) . (3)

Alvarez and Macovski [3] empirically found that:

µp(E,Z) ≈ 1

E3
Kp

ρ

A
Zm (4)

µz(E,Z) ≈ fKN (E)Kc
ρ

A
Z , (5)

where fKN is the Klein-Nishina function, A is the atomic
weight and Kp, Kc and m are constants. An approxima-
tion of the atomic number Z can be obtained by using low



(a) (b)

Figure 2. Cross-modal image translation of dual-energy X-ray imagery with a cGAN. (a) Modified pix2pix architecture to account for
multiple input and outputs. (b) Two generators are proposed: Gcat concatenates channel-wise the inputs while Gsia has a sub-network for
each input modality. Both generators implement different output networks for each output modality.

and high energies El and Eh where the response I is domi-
nated by µp and µc, respectively. Since the response of both
energies are measured with respect to the same object, and
thus the same thickness, the ratio µp(El, Z)/µc(Eh, Z) can
be calculated using Eq. (2). From Eqs. (4) and (5), we can
express this ratio as:

µp

µc
≈ 1

E3
l fKN (Eh)

Zm−1 . (6)

The atomic number Z is then approximated by:

Z ≈ K

(
µp

µc

) 1
n

, (7)

where K is a value depending on the high and low energies
and n = m − 1 is a constant. Finally, the thickness of a
material can be obtained from Eq. (2).

Since an X-ray beam may penetrate different objects, in-
stead of calculating the Z for each of them, we simplify our
analysis by considering that the beam went through an ho-
mogeneous material. The resulting atomic number of this
hypothetical material is known as the effective atomic num-
ber, Zeff. Dual-energy pseudo-coloured images are coloured
by assigning a colour depending on the Zeff and the thick-
ness, Eq. (2) [20].

4. Methodology

In this work, we utilise an approach based o the pix2pix ar-
chitecture, modified to account for multiple input and out-
put images, for cross-modality translation of dual-energy
X-ray imagery.

4.1. Problem Formulation

The pix2pix architecture is a cGAN consisting on a gen-
erator G : RCin×H×W → RCout×H×W that maps an
image with Cin input channels and H × W spatial size
from a domain to another domain with the same spatial
size and Cout output channels, and a discriminator D :
R(Cin+Cout)×H×W → (0, 1) that classifies if the image
from the target domain is real or fake given the image from
the source domain. Given two paired images {xA, xB}
from domains A and B, pix2pix uses the adversarial loss
function:

LcGAN (G,D) =ExA,xB
[logD(xA, xB)] +

ExA
[log (1−D(xA, G(xA)))] .

(8)

and additionally, an LL1 reconstruction loss is added as the
final image reconstruction objective:

G∗ = argmin
G

max
D

LcGAN (G,D) + λLL1(G) . (9)

Conventionally, pseudo-coloured X-ray images (e.g.
Fig. 1) are formed from the effective atomic number Zeff
and the material thickness/density, which are obtained from
the high and low energy responses (see Sec. 3). Conse-
quently, we extend the pix2pix architecture to accept mul-
tiple input and output images in order to allow us to work
across the joint set of {pseudo-colour, high, low, Zeff} X-ray
modalities (as shown in Fig. 1).

4.2. Proposed Variants

Our proposed extended architecture is shown in Fig. 2a.
Given n paired inputs x = {x1, . . . , xn} with {u1, . . . , un}



channels and m paired outputs y = {y1, . . . , ym} with
{v1, . . . , vm} channels, we define a multi-domain genera-
tor G : R

∑n
i ui×H×W → R

∑m
i vi×H×W . Two methods

of combining multiple domains are explored in this work:
via channel concatenation and via a Siamese network sub-
architecture. In the former, the generator Gcat takes the in-
put images concatenated channel-wise as a single input for
a network f , while in the latter, the generator Gsia process
each input xi in a sub-network fi, where the resulting repre-
sentations are concatenated channel-wise and combined fed
into a common network g. Each domain output yj is gener-
ated from a common feature representation of the input im-
ages using a different network hj for each output modality.
A diagram with these approaches is shown in Fig. 2b. The
generators Gcat and Gsia define the generation processes:

(ycat)j = Gcat(x)j

= (hj ◦ f) ([x1, . . . , xn])
(10)

and:

(ysia)j = Gsia(x)j

= (hj ◦ g) ([f1(x1), . . . , fn(xn)]) ,
(11)

where [. . .] means concatenation. Similarly to the discrimi-
nator in the pix2pix architecture, our multi-domain discrim-
inator D : R(

∑
i ui+

∑
j vj)×H×W → (0, 1) takes all inputs

and outputs to classify them as real or fake.
The multi-domain adversarial and reconstruction losses

are then:

LmcGAN (G,D) =Ex,y [logD(x,y)] +

Ex [log (1−D(x, G(x)))]
(12)

and:

LmL1(G) =

m∑
j

Ex,yj [∥yj −G(x)j∥1] . (13)

Furthermore, Jiang et al. [13] introduced the frequency fo-
cal loss (FFL), which aims to reduce the gap in the fre-
quency response of the synthesized images. We investigate
if our multi-domain image translation can be improved us-
ing the FFL. Finally, our objective function is then:

G∗ = argmin
G

max
D

LmcGAN (G,D)+

λmL1LmL1(G) + λFFLLFFL(G) .

(14)

4.3. Network Architecture

The original pix2pix model uses a UNet [24] with skip
connections as the generator. However, following the ap-
proach of CycleGAN [32], we implement the architecture

Network Architecture

fi

Conv 7× 7
Conv 3× 3, stride = 2
Conv 3× 3, stride = 2

L× Residual

g M× Residual

hj

N× Residual
Transp Conv 3× 3, stride = 2
Transp Conv 3× 3, stride = 2

Conv, 7× 7

Table 1. Architecture of the generator sub-networks.

described by Johnson et al. [14]. This network consists
on three convolutional layers, a series of stacked residual
blocks, two transposed convolutional layers and an output
convolutional layer. Following this architecture, Tab. 1 de-
scribes the fi, g and hj networks used for the generators in
Eqs. (10) and (11). The fi networks consist on three con-
volutional layers and L residual blocks, the g network is
composed of M residual blocks and the hj networks have
N residual blocks, two transposed convolutions and a fi-
nal convolutional layer. All layers use instance normalisa-
tion [26] and ReLU activation except for the last convolu-
tional layer in hj , that does not use normalisation and has
a Tanh function as activation. The network f in Eq. (10) is
defined as f = g ◦ fi. In this work we have three different
cases of cross-modal synthesis: one-to-one mode, multi-to-
one mode and one-to-multi modes. For one-to-one and one-
to-many task we use L = 4, M = 5 and N = 0 while for
many-to-one we use L = M = N = 3. Finally, the dis-
criminator follows the PatchGAN network used by Isola et
al. [12].

5. Evaluation

We evaluate our multi-modal cross-modal translation archi-
tecture for pseudo-coloured and raw X-ray energy response
images (as shown in Fig. 1). We use the labels rgb, h, l and
z for the pseudo-colour, high energy, low energy and Zeff
imagery subsets, respectively. The experiments performed
in this work are described in Tab. 2.

5.1. Dataset

We train our models in the deei6 dataset [5]. This dataset
consists on 7,022 quadruplets (h, l, z and rgb) of bags
scanned in a dual-energy Gilardoni FEP ME 640 AMX
scanner [10] (see Fig. 1). Bounding box and instance mask
annotations are given for six classes: bottle, hairdryer, iron,
toaster, phone-tablet and laptop. The dataset is split in 4,909
quadruplets for training and 2,113 for testing.



Experimental label Reconstruction Type Description
{h, l, z} → rgb one-to-one High energy, low energy or Zeff to pseudo colour.
hl sia → rgb many-to-one High and low energy to pseudo colour (Gsia).
hlz sia → rgb many-to-one High energy, low energy and Zeff to pseudo colour (Gsia).
hlz cat → rgb many-to-one High energy, low energy and Zeff to pseudo colour (Gcat).

rgb → {h, l, z} one-to-one Pseudo colour to high energy, low energy or Zeff

rgb → hlz one-to-many Pseudo colour to high energy, low energy and Zeff

Table 2. Experimental labels and descriptions for the experiments carried out in this work.

5.2. Performance Metrics

Two image quality metrics are used in this work: mean
squared error (MSE) and the structural similarity index
measure (SSIM) [28]. Additionally, two detection net-
works, CARAFE [27] and Cascade Mask RCNN [6], are
trained on the real X-ray image datasets using the same set-
tings as Bhowmik et al. [5] and tested on the synthesized
images generated from the same X-ray dataset under the ex-
perimental conditions set out in Tab. 2. We report instance
segmentation results using the MS COCO mean Average
Precision (mAP) performance metric [19] (intersection over
union of 0.50:.05:0.95), using Average Precision (AP) for
class-wise and mAP for overall performance.

5.3. Implementation Details

Input images are resized to 600 × 600 pixels and random
cropped to have a final size of 512× 512. Differently from
pix2pix, we do not use dropout. The model is trained using
Adam optimization [17] with a learning rate of 2×10−4 for
100 epochs, linearly decaying to 0 for another 100 epochs.
We choose λL1 = 100 for the objective function defined
in Eq. (14) and λFFL = 10 when the FFL is used. A batch
size of 6 n-tuples of image modalities is used to train our
models.

6. Results
In this section we review the results for image synthesis
quality and detection performance. We evaluate the Gsia
and Gcat generators and the impact of the FFL during train-
ing.

6.1. Reconstruction Quality

Cross-modality image synthesis performance is shown in
Tab. 3. MSE and SSIM metrics are reported, comparing the
synthesis quality with the real images. The impact of using
the FFL is also reported. It can be observed that in general,
the best reconstructions are obtained when using the focal
frequency loss, although the improvement is minor and does
not always lead to the best results.

The best pseudo-coloured reconstructions are obtained
by using the three modalities h, l and z and the Gsia gener-
ator from Eq. (11), obtaining an MSE of 16.5 and SSIM of

Model w/o FFL w/ FFL
MSE ↓ SSIM ↑ MSE ↓ SSIM ↑

h → rgb 182.3 0.9229 185.6 0.9216
l → rgb 183.6 0.9296 168.4 0.9297
z → rgb 125.0 0.9041 121.5 0.9049

hl sia → rgb 465.1 0.9411 101.6 0.9600
hlz cat → rgb 20.1 0.9753 18.9 0.9766
hlz sia → rgb 16.5 0.9815 17.3 0.9808
rgb → h 2.57 0.9953 2.28 0.9948
rgb → hlz 18.3 0.9910 12.3 0.9915
rgb → l 5.63 0.9901 5.43 0.9888

rgb → hlz 7.55 0.9847 6.13 0.9885
rgb → z 38.0 0.9823 4.61 0.9830
rgb → hlz 1.43 0.9794 0.76 0.9921

Table 3. Cross-modality reconstruction performance.

0.9815. We also confirm that pseudo-coloured image recon-
struction gets degraded when only using one energy level.
Although the use of Zeff individually significantly improves
the MSE, the structural similarity gets worse because the
thickness information is lost (Sec. 3). Fig. 3a shows an ex-
ample of the pseudo-colour reconstructions. It can be seen
that when only using the high or low energy images, the re-
constructed image tends to get confused around the organic
(orange) regions, getting materials mixed up. Although the
material information can be matched better using only the
Zeff modality, the shape is not always obtained correctly
(see for example the top right corner of the laptop). It is
also observed that using more than just one modality cre-
ates very accurate reconstructions.

As seen in Tab. 3, the energy modalities can be recov-
ered with high SSIM from the pseudo-colour images. The
best results for high and low energies are obtained when
they are generated using separate models. This could be ex-
plained by earlier layers learning specific features that cap-
ture the effect from each energy modality. However, the
Zeff modality is better recovered when predicting the three
raw modalities at the same time, meaning that the learned
features guided from the other modalities help in the identi-
fication of the atomic number. Fig. 3b shows an example of
the high energy, low energy and Zeff modalities synthesized



(a)

(b)

Figure 3. Exemplar of cross-modality synthesis. (a) Raw modalities to pseudo-colour. (b) pseudo-colour to raw modalities.



Dataset Bottle Hairdryer Iron Toaster P-tablet Laptop mAP

H
ig

h
E

ne
rg

y Real 0.641/0.628 0.640/0.657 0.675/0.689 0.787/0.793 0.516/0.533 0.771/0.776 0.672/0.679
rgb → h 0.597/0.593 0.579/0.594 0.642/0.656 0.740/0.760 0.496/0.498 0.754/0.751 0.635/0.642
rgb → h (FFL) 0.596/0.591 0.584/0.596 0.632/0.655 0.738/0.756 0.469/0.481 0.741/0.747 0.627/0.638
rgb → hlz 0.578/0.571 0.548/0.552 0.613/0.638 0.728/0.745 0.476/0.469 0.733/0.744 0.613/0.620
rgb → hlz (FFL) 0.590/0.584 0.553/0.563 0.618/0.641 0.715/0.724 0.480/0.474 0.737/0.747 0.615/0.622

L
ow

E
ne

rg
y Real 0.615/0.620 0.609/0.629 0.657/0.682 0.751/0.776 0.508/0.526 0.760/0.765 0.650/0.666

rgb → l 0.585/0.606 0.552/0.569 0.626/0.649 0.747/0.762 0.498/0.490 0.731/0.743 0.623/0.637
rgb → l (FFL) 0.584/0.607 0.559/0.574 0.630/0.651 0.759/0.771 0.507/0.500 0.739/0.748 0.630/0.642
rgb → hlz 0.559/0.563 0.524/0.545 0.605/0.637 0.740/0.751 0.471/0.462 0.706/0.716 0.601/0.612
rgb → hlz (FFL) 0.578/0.593 0.544/0.561 0.623/0.649 0.740/0.758 0.494/0.493 0.727/0.733 0.618/0.631

Z
FF

L

Real 0.534/0.548 0.460/0.490 0.606/0.634 0.783/0.793 0.490/0.488 0.718/0.732 0.598/0.614
rgb → z 0.533/0.540 0.355/0.386 0.604/0.635 0.779/0.786 0.485/0.483 0.718/0.732 0.579/0.593
rgb → z (FFL) 0.535/0.543 0.442/0.471 0.603/0.634 0.776/0.787 0.483/0.480 0.715/0.736 0.592/0.609
rgb → hlz 0.472/0.494 0.290/0.304 0.544/0.560 0.745/0.756 0.403/0.395 0.642/0.666 0.516/0.529
rgb → hlz (FFL) 0.460/0.492 0.241/0.271 0.551/0.576 0.766/0.767 0.387/0.391 0.611/0.616 0.502/0.519

Ps
eu

do
C

ol
ou

r

Real 0.638/0.635 0.609/0.638 0.662/0.694 0.788/0.790 0.536/0.552 0.754/0.776 0.665/0.681
h → rgb 0.575/0.573 0.517/0.528 0.557/0.576 0.718/0.729 0.419/0.441 0.703/0.722 0.581/0.595
h → rgb (FFL) 0.567/0.567 0.512/0.532 0.557/0.573 0.715/0.730 0.424/0.445 0.716/0.730 0.582/0.596
l → rgb 0.525/0.534 0.290/0.315 0.423/0.432 0.704/0.719 0.388/0.398 0.520/0.577 0.475/0.496
l → rgb (FFL) 0.556/0.569 0.396/0.400 0.503/0.494 0.734/0.747 0.430/0.435 0.615/0.671 0.539/0.553
z → rgb 0.560/0.554 0.476/0.478 0.571/0.577 0.777/0.784 0.480/0.482 0.748/0.756 0.602/0.605
z → rgb (FFL) 0.568/0.566 0.489/0.487 0.572/0.578 0.779/0.790 0.484/0.482 0.743/0.754 0.606/0.609
hl sia → rgb 0.513/0.514 0.454/0.456 0.583/0.539 0.726/0.732 0.420/0.425 0.478/0.476 0.529/0.524
hl sia → rgb (FFL) 0.615/0.615 0.531/0.531 0.660/0.642 0.783/0.791 0.479/0.485 0.727/0.738 0.632/0.634
hlz cat → rgb 0.634/0.627 0.628/0.639 0.678/0.697 0.792/0.799 0.517/0.532 0.771/0.773 0.670/0.678
hlz cat → rgb (FFL) 0.635/0.628 0.621/0.636 0.683/0.700 0.792/0.795 0.531/0.544 0.769/0.772 0.672/0.679
hlz sia → rgb 0.637/0.631 0.637/0.649 0.688/0.704 0.793/0.802 0.524/0.537 0.773/0.777 0.675/0.683
hlz sia → rgb (FFL) 0.641/0.635 0.628/0.644 0.685/0.701 0.793/0.802 0.528/0.536 0.768/0.777 0.674/0.682

Table 4. Object detection results using different modalities of X-ray imagery from the deei6 dataset. The two reported values are for the
CARAFE [27] and Cascade Mask RCNN [6] architectures.

from the pseudo-colour image. Some small blurring effects
can be seen in the high and low energy generations for the
rgb → hlz model. Nevertheless, it is seen that regardless
the model, the generated images exhibit high fidelity.

6.2. Detection Performance

Detection performance for real and synthesized images is
presented in Tab. 4. Results are for instance segmentation
predictions. They are presented with two values, each corre-
sponding to the CARAFE and Cascade Mask RCNN mod-
els. Per-class AP and total mAP results are shown.

Synthesized raw modalities show a better detection per-
formance when they are generated with individual models,
which is consistent with the quality of the reconstructions
in Tab. 3. Compared to the real images, the detection per-
formance in the synthesized raw modalities gets reduced.
This means that although the generated images may seem
very similar, the reconstructions do not perfectly match the
energy projections. It is worth noticing that while the gener-
ated Zeff from the rgb → hlz shows a good SSIM, its detec-
tion performance is reduced significantly while compared to
the original Zeff response. This shows that detection mod-
els are very sensitive to small variations in the input images.

On the other hand, the mAP of the generated pseudo-colour
rgb images gets improved by a 1% for CARAFE detection
model when using the three raw modalities and the Gsia gen-
erator. This slight improvement over the detection perfor-
mance may indicate that our model is learning to generate
pseudo-coloured images more effectively than the standard
formulation in terms of information retention in the result-
ing pseudo-coloured visualisation. These results illustrate
that our proposed approach can be used to learn meaning
from representations across differing X-ray modalities such
that they can be used to effectively train a secondary deep
neural network for subsequent downstream tasks.

7. Conclusions

In this work we investigate the use of a conditional gen-
erative adversarial network for image to image translation
of dual-energy X-ray security imagery. We perform image
colourisation from high energy, low energy and effective
atomic number Zeff modalities and vice versa. Two novel
generator architectures are proposed for the combination of
multiple modalities as inputs and outputs. The first gen-
erator, Gsia, takes each input into a sub-network and then



concatenates the resulting features. Our second proposed
generator, Gcat, concatenates channel-wise the input images
and process it as a single image multi-channel input. In
both cases, multiple outputs are generated by having a sub-
network to generate each modality. The use of the focal
frequency loss (FFL) is also investigated.

It is observed that the best results for image colourisa-
tion are obtained when using the three modalities (high en-
ergy, low energy and Zeff) and the Gcat generator, achiev-
ing a SSIM of 0.9766. In general, the FFL improved im-
age colourisation. The best results for the extraction of the
high and low energy modalities are obtained when having
a separate model for each, having SSIMs of 0.9953 and
0.9901 (without FFL). On the other hand, the Zeff gets a
better reconstruction when using a model that predicts the
three raw modalities at the same time, achieving a SSIM of
0.9921. A qualitative assessment shows that the differences
are barely noticeable and reconstruction exhibit a good sim-
ilarity when compared to the original X-ray modality im-
agery.

Detection performance results were obtained for two dif-
ferent architectures trained on the real images and tested on
the synthesized images. For the raw X-ray energy response
imagery, performance is worse on the generated images and
compared to the original imagery. However, the pseudo-
coloured images generated using the three raw modalities
and the Gsia generator show a better detection performance
than that obtained for the real images. On this basis, we
hypothesize that the model learnt for raw X-ray energy re-
sponse to pseudo-colour image translation offers a superior
mapping in terms of information retention than the original
raw X-ray imagery.

Future work will investigate the use of modern architec-
tures for higher definition image to image translation and
the transferability of these model to images obtained from
different scanners that have no raw X-ray energy data avail-
ability.
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