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Abstract—Graph neural networks (GNNs) have attracted ex-
tensive interest in text classification tasks due to their expected
superior performance in representation learning. However, most
existing studies adopted the same semi-supervised learning setting
as the vanilla Graph Convolution Network (GCN), which requires
a large amount of labelled data during training and thus is
less robust when dealing with large-scale graph data with fewer
labels. Additionally, graph structure information is normally
captured by direct information aggregation via network schema
and is highly dependent on correct adjacency information.
Therefore, any missing adjacency knowledge may hinder the
performance. Addressing these problems, this paper thus pro-
poses a novel method to learn a graph structure, NC-HGAT,
by expanding a state-of-the-art self-supervised heterogeneous
graph neural network model (HGAT) with simple neighbour
contrastive learning. The new NC-HGAT considers the graph
structure information from heterogeneous graphs with multi-
layer perceptrons (MLPs) and delivers consistent results, despite
the corrupted neighbouring connections. Extensive experiments
have been implemented on four benchmark short-text datasets.
The results demonstrate that our proposed model NC-HGAT sig-
nificantly outperforms state-of-the-art methods on three datasets
and achieves competitive performance on the remaining dataset.

Index Terms—Semi-supervised learning, graph neural net-
work, contrastive learning, text classification

I. INTRODUCTION

Text classification is a fundamental task in natural lan-
guage processing (NLP), which can be applied to a variety
of downstream tasks, such as question answering, machine
translation and sentiment analysis [1]. The representation
learning ability of textual features is a leading cause of the
high performance of text classification models. Consequently,
it is a pressing need to study how to extract textual features
more effectively. Recently, graph neural networks (GNNs)
have been increasingly applied to text classification tasks,
due to their advantages of dealing with complex semantics
and topological information, by modelling texts as graph
structure [2]. Graphs in such studies [3], [4] usually consist of
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different types of nodes, which represent words or documents,
and edges, to indicate relations. These graphs are known as
heterogeneous information networks (HIN) or heterogeneous
graphs. Different from most existing studies that focus on long
text classification, we mainly focus on short text classification,
as our daily communication is increasingly completed via short
texts, such as tweets, messenger and online comments. Thus
it has become more important to study this field.

On the one hand, most existing studies of GNNs on text
classification tasks are trained in a semi-supervised manner,
the same as the vanilla Graph Convolution Network (GCN)
[5] requiring a large set of labelled data, which cannot be
obtained in many real-life scenarios. Therefore, the shortage
of labelled data may undermine the performances of graph
neural network models on classification tasks, particularly
with large scale data [6], [7]. On the other hand, although
a GCN can encode local topological properties, it may fail to
fully capture the global structural information [8]. To be more
specific, existing methods for text classification mainly learn
direct neighbourhoods and the associated textual features by
supervised information aggregation. They may not be able to
incorporate the high-order, rich relations among texts [9], and
hence are not robust when the connections among nodes are
noisy or missing [10], as is the case with the data considering
only 40 labels known per class for training in this paper.

To address the above problems, we propose to integrate
neighbouring contrastive learning (NC) with the heteroge-
neous graph attention network (HGAT), forming NC-HGAT.
HGAT is the state-of-the-art work for text classification tasks,
proposed by [6] to embed HIN with a dual-level attention
mechanism for both nodes and relations. Contrastive learning
can learn intrinsic and transferable topological information,
enhance the performance of graph neural networks [11], and
is widely applied in NLP tasks for pre-training [12]. NC learn-
ing enables our proposed model to transform k" structural-
aware features, without using direct message-passing modules,



and hence improve robustness, despite missing connections
between words during inference [10], when labelled data is
limited.

The contributions of the paper are summarised as follows:

o To the best of our knowledge, this study is the first at-
tempt to apply contrastive learning with a heterogeneous
graph neural network to short text classification tasks.

o We propose to use a simple MLP to learn the neighbour-
ing information without direct message-passing, which
can be easily applied to existing graph neural network
models [10] to text classification.

o Experimental results on three of the four datasets anal-
ysed show NC-HGAT outperforming the state-of-the-art
on short text classification with limited labelled data, and
it also delivers a competitive result on the fourth dataset.

II. RELATED WORK

Text Classification. Extensive studies have been conducted
on text classification, such as traditional machine learning
using manually designed features [13], convolutional neural
networks [14] and recurrent neural networks [15]. Recently,
graph neural networks (GNNs) have shown promising perfor-
mance on text classification, as text can be modelled as edges
and nodes in a graph structure. For example, TextGCN [16]
applied the vanilla GCN to heterogeneous graphs, on graphs
built from a text corpus, and gained improved results. [6] pro-
posed a novel heterogeneous graph attention networks model
(HGAT) with a dual attention mechanism, to consider more
relations between different nodes. Recently, [17] introduced
an orphan category to HGAT, to remove unrelated stop-words,
which improves classification accuracy. [9] also incorporated
the attention mechanism with deep diffusion layers, to enrich
the context information of texts. [18] constructed hypergraphs
for text classification to capture high-order interaction between
words. However, these methods all relied heavily on the
direct message-passing function to learn node-wise feature
transformation, and the performance decreased when labelled
training data was limited. We thus propose, for the first time, to
the best of our knowledge, to solve the problem by applying
contrastive learning of graph structure in text classification
tasks.

Contrastive Learning. Contrastive learning is a discrimi-
native approach, which aims to learn embeddings of objects,
shorten the distance between similar entities, and lengthen
the gap among dissimilar entities [19]. It is naturally in line
with the classification objective [20] and has increasingly
been applied to computer vision and NLP tasks. Contrastive
learning can be used in both self-supervised representation
learning [21]-[23] and supervised learning [12], [24], [25]. In
NLP tasks, [26] performed contrastive learning on adversarial
samples, to improve text classification, and [27] applied it
to obtain more effective embeddings of words, to mitigate
the problem of data scarcity. For graph learning, contrastive
learning between global and local objects can better capture
structural information [28]. Comprehensive information about
contrastive learning can be found in [29] and [19].

III. METHODOLOGY

In this section, we will introduce our NC-HGAT model, a
merger of the HGAT model [6] and neighbouring contrastive
(NC) learning adapted from the Graph-MLP model [10].

A. Construct Heterogeneous Graph from Data

Here we apply the same approach as in [6], to construct
heterogeneous graphs from texts. This is briefly illustrated
below, for clarity. Specifically, a heterogeneous graph can be
denoted as G = (V,¢€), where V is the union of entities F,
topics 7', and short texts S; and € = €7, ¢€g,... is the set of
edges representing the relations between them, as shown in
Figure 1.
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Fig. 1. Example Snippet from a Heterogeneous Graph Structure

Each short text (document) is assigned to a number of top
M possible topics (t1, to...tpr) using LDA [13] and the entities
E are mapped to Wikipedia via TagME!, an entity linking
tool. Edges will be created if an entity e is contained in a
document s or the document is assigned to a topic. Considering
entities, short texts and topics in Figure 1, it is highly likely
that the documents in the figure would be classified with their
correct label as "Business”. The overall structure of our model
is shown in Figure 2, where we apply a HGAT model (circled
by the orange color dash line) to construct text graphs and
utilise an MLP-based model to update features, then calculate
the similarity among nodes within the same input batch, based
on an adjacency matrix. The details are explained in the later
subsections III-B, III-C and III-D.
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Fig. 2. Illustration of our NC-HGAT model
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B. HGAT

Compared with TextGCN [16], which directly applies GCN
to different subgraphs, HGAT introduces a dual attention
mechanism: type-level attention and node-level attention, to
learn the relative influence of the different types and neigh-
bouring nodes on the target node during information aggrega-
tion [6]. The type-level attention a; is calculated as:

a; = softmaz(o (s - [hil i) (M

where o is a LeakyReLU activation, u; denotes the attention
of the type ¢ of the node, and operation || is a concatenation. h;
and h, are a specific node and type embedding, respectively.
Then, a softmax function is applied, to normalise all types of
neighbours of node . The node level attention a,, is formulated
based on the type level attention a; from Equation (1):

an = softmaz (o (v’ - a[hi||h;])) )

where v denotes the attention vector, and hjs is the neigh-
bour embedding of node ¢ with type ¢, is further concatenated
with the central node h;. The type attention weight a; is
obtained from 1. The two attention mechanisms are then
integrated into the heterogeneous graph convolution, to update
the embedding of nodes in the next layer:

H™ =0(> Ay - H-W}) 3)

where A is an adjacency matrix with type ¢ edges, H!
represent the features of type ¢ neighbouring nodes of the
target node, and W/ is a weight matrix.

C. Neighbouring Contrastive Learning

The neighbouring contrastive learning is implemented by
calculating the contrastive loss for node ¢. The idea behind
it is that neighbouring documents are more likely to have the
same class label. The node feature X will pass two linear
layers with activation ¢ and layer normalisation LN, and a
dropout in between to avoid over-fitting, as in [10]:

Z = W' [Dropout(LN (o(XW?)))] €]

where W' and WY are the weight matrices of two layers.
The number of linear layers could be set differently (from 1-
7) as analysed in IV-D. Next, the embedding Z will be used
to calculate the neighbouring contrastive loss:

> Aexp(sim(zi, 2;) /1)
> exp(sim(zq, zi) /1)

lossyo = —log 5)
where )\ is a connection measure of node j and ¢ and is non-
zero only when the node j is within the k-hop neighbourhood
of node i; sim is the cosine similarity, and 7 is the learning
’temperature’ parameter.

D. Model Training

Considering the limited labelled data provided, we only use
40 labelled documents per class as training data, in line with
previous work [6], [17]. We firstly use the HGAT model to
build graphs from the text corpus and learn the representation
of nodes with the dual-level attention mechanism. At the same
time, we use the MLP-based model to learn more graph struc-
ture information, without an explicit message-passing function.
To be more specific, the k-hop neighbours are considered
more similar to the target node, where this k" power of the
neighbouring information is in the range of [1,2,3,4,5,6,7]. If
the neighbouring node is not a k-hop of the target node, the
neighbours’ information is considered zero. Then, we calculate
the neighbouring contrastive loss, lossnc.

l0SStotar = loSSnLL + B * lossne (6)

The total loss of our model 6 is the sum of the conventional
negative log-likelihood loss loss 1 and the contrastive loss,
lossyc. B is a coefficient parameter to balance the total loss.
The gradient descent algorithm is applied to optimise this total
loss.

IV. EXPERIMENTS
A. Dataset

We use the same four benchmark short text datasets as in
[6], for a fair comparison to prior work. The movie review
dataset (MR) [30] has 5,331 positive and 5,331 negative
reviews, each of which is one sentence. Twitter, a sentiment
classification dataset provided by the NLTK library of Python,
contains 5,000 positive and negative tweets, respectively.
Ohsumed is a bibliographic database provided by [31] where
a graph convolution network model is applied for text classi-
fication. Each of the 7,000 documents we use is labelled with
23 types of diseases. We use 3,357 documents in the training
set and the remaining in the test set. AGNews are randomly
selected 6,000 news items from [32], which are classified into
four classes: world, sports, business and sci/tech.

TABLE I
DATASET SUMMARY

Datasets Docs Token Entities Classes
MR 10662 7.6 1.8(76%) 2
Twitter 10000 35 1.1(63%) 2
AGNews 6000 18.4 0.9(72%) 4
Ohsumed 7400 6.8 3.1(96%) 23

B. Baselines and Experiment Settings

Baselines. We consider three widely applied NLP models
and other three graph neural network models, applied as
baselines for text classification. The parameter settings of all
baseline models are the same as in [6], [17].

SVM + TFIDF and SVM + LDA are conventional machine
learning classifiers, using classic features, including TF-IDF
and LDA features [13], [33].



BERT, deploying a bidirectional Transformer encoder [34],
is a widely-applied model in NLP. The model (Bert-base) has
been fine-tuned as in [17].

TextGCN is the first study that applies GCN to text by
building heterogeneous graphs from a text corpus [31].

HAN considers the importance of both node and meta-path,
by introducing an attention mechanism into the heterogeneous
graph neural network [16].

HGAT integrates a dual attention mechanism into a het-
erogeneous information network [6], [17], representing the
current state-of-the-art on short text classification tasks.

Experimental Settings. We implement our model with
Pytorch 1.10.2 and CUDA 10.2. The hyper-parameters of NC-
HGAT are mainly borrowed from the experiments of HGAT
[6] and Graph-MLP [10]. 40 labelled documents per class are
randomly selected and split equally into training and validation
sets. We use two layers and the number of hidden units is
512, learning rate 0.005, with an 80% dropout rate at each
layer. The dimension of pre-trained word embeddings is set to
100. The k' power of the adjacency matrix, the temperature
parameter 1 and the coefficient balance parameter [ are set
using grid search. The range of n and 3 are [0,1,2] and [0.5,
1.0, 2.0, 3.0], respectively.

C. Experimental Results

Table IT and Table III show the average classification perfor-
mance of different models on the four benchmark datasets. The
proposed model NC-HGAT outperforms all baselines on three
datasets, demonstrating the effectiveness of the neighbouring
contrastive learning with the heterogeneous graph attention
network on short text classification. The improvement made
by our proposed model with respect to the Ohsumed dataset
in terms of the F1 score is statistically significant based on
the t¢-test (p < 0.05).

One possible reason is that Ohsumed has the most classes
from our four considered datasets (see Fig. 3). It is also not a
uniform distribution, while the classes are equally distributed
in the MR, Twitter and AGNews dataset. This shows that con-
trastive learning can enhance the ability to learn the structural
node distribution and thus improve the classification accuracy,
particularly when there are multi-classes.

The minor under-performance of NC-HGAT on the MR
dataset may be due to the fact that it captures more background
information or stop-words, which are unrelated to a specific
class, thus diminishing the result. Another reason suggested
by [31], who also found the under-performance of TextGCN
model on MR dataset, is that edges in the constructed text
graphs of MR are fewer than other datasets, as the documents
are very short and thus limit the embedding learning ability.

TABLE II
MODEL ACCURACY ON DATASETS

Dataset AGNews MR Ohusmed Twitter
SVM+TFIDF 59.45% 54.29% 39.02% 53.69%
SVM+LDA 65.16% 54.40% 38.61% 54.34%
Bert 69.45% 53.48% 21.76% 52.00%
Text-GCN 67.61% 59.12% 41.56% 60.15%
HAN 62.64% 57.11% 36.97% 53.75%
HGAT 72.10% 62.75% 42.68% 63.21%
NC-HGAT 73.15% 62.46% 43.27 % 63.76 %
TABLE III
MODEL F1-SCORE ON DATASETS
Dataset AGNews MR Ohusmed Twitter
SVM+TFIDF 59.79% 48.13% 24.78% 52.45%
SVM+LDA 64.79% 48.39% 25.03% 53.97%
Bert 69.31% 46.99% 4.81% 43.34%
Text-GCN 67.12% 58.98% 27.43% 59.82%
HAN 61.23% 56.46% 26.88% 53.09%
HGAT 71.61% 62.36% 24.82% 62.48%
NC-HGAT 72.06 % 62.14% 27.98% 62.94%
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Fig. 3. Label distribution of the Ohsumed Dataset. Y-axis denotes the label
of each document and X-axis represents the number of documents classified
with that label. It is clear that the Ohsumed dataset is not uniform distributed

D. Impact of Layer Numbers of MLP

To investigate the impact of the MLP layer number deployed
in section III-C, we evaluate our NC-HGAT model with 1-7
layers, inspired by [35], on the Twitter (very short sentence
with less tokens seen in the Table I) and AGnews (relatively
long sentence with more tokens) datasets as examples . As
shown in Tables IV, V, the model with two layers performs
better on the AGnews dataset; for the Twitter dataset, six
layers perform the best. As for the AGNews dataset, the
vanishing gradient and over-processed information will lead
to an unstable model if the number of layers is excessive.
The node representations may also become indistinguishable,
known as the oversmoothing problem [36]. For the Twitter
dataset, however, distant words may still be able to classify
the document, and six layers can capture sufficient structural
information.



TABLE IV
MODEL PERFORMANCE WITH DIFFERENT LAYERS ON THE TWITTER
DATASET
Number of Layers Accuracy F1
1 63.04% 62.99%
2 61.86% 61.22%
3 61.05% 60.93%
4 63.66% 62.5%
5 63.28% 62.63%
6 63.76 % 62.9%
7 62.79% 62.28%
TABLE V
MODEL PERFORMANCE WITH DIFFERENT LAYERS ON THE AGNEWS
DATASET
Number of Layers Accuracy F1
1 73.00% 71.72%
2 73.15% 72.06 %
3 72.50% 71.81%
4 72.85% 71.61%
5 72.50% 71.03%
6 72.60% 71.16%
7 72.3% 71.45%

V. CONCLUSION AND FUTURE WORK

In this paper, we propose, for the first time, to use con-
trastive learning to capture the topological information with
HGAT on short text classification tasks. Extensive experiments
on different datasets with different numbers of target classes
illustrate that neighbour contrastive learning effectively learns
and integrates structural information among entities and thus
enhances the robustness of the existing model, particularly
when there are limited labelled data.

Several potential extensions to our work could be addressed
in future studies. The first is how to augment both feature
and topology levels to improve the performance of graph
learning models. For example, the links among documents
could be directed; thus, hypergraphs, which allow one edge
to link to more than two vertices, can be applied to capture
more complex group-wise relationships. Second, fusing the
method’s expressive ability to capture global information with
a multiple language model could also be insightful. Third,
extending the model with other training methods, such as
adversarial training, may improve the robustness more with
fewer labels. Finally, the model can be applied to long text
classification with multiple classes.
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