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Abstract—Despite rapid advances of modern artificial intelli-
gence (AI), there is a growing concern regarding its capacity
to be explainable, transparent, and accountable. One crucial step
towards such AI systems involves reliable and efficient uncertainty
quantification methods. Existing approaches to uncertainty quan-
tification in natural language processing (NLP) take a Bayesian
Deep Learning approach. However, the latter is known to not
be computationally efficient in testing time, thus hindering its
applicability in real-life scenarios. This paper proposes a new
focus on the efficiency of uncertainty quantification methods, eval-
uating them on four multi-label text classification tasks. Our novel
methods of representing epistemic and aleatoric uncertainties
enable efficient uncertainty quantification (around 13 to 45 times
faster than existing approaches, depending on architecture) with
posterior analysis in the (approximated) latent- and data space.
We conduct extensive experiments and studies on diverse neural
network architectures (LSTM, CNN and Transformer) to analyse
their power. Our results prove the benefits of explicitly modelling
uncertainty in neural networks.

Index Terms—Bayesian method, neural network, deep learn-
ing, natural language processing, uncertainty quantification

I. INTRODUCTION

Deep neural networks have been successfully applied in a
wide range of natural language processing (NLP) tasks, such
as text classification, question answering, and natural language
inference [1]. However, modern deep neural networks are
(mainly) discriminative models, with only point estimation.
They can make predictions ‘blindly’ [2], raising, in practice,
concerns over AI safety and social bias [3]. One natural
solution towards such trustworthy and robust AI systems is
to combine the predictive power of Deep Learning with the
statistical robustness of Bayesian Learning [4].

Combining these two powerful tools inspires two different
directions, as shown in Figure 1: Bayesian Deep Learning
(BDL) and Deep Bayesian Learning (DBL). In the deep learn-
ing approach, each neuron learns a fixed value representing its
parameters; in contrast, the BDL approach allows each neuron
to learn a distribution of its parameters; and the DBL approach
infers a latent variable and learns its distribution instead. A
widely adopted BDL approach is the Bayesian Neural Network
(BNN) [5]–[7]; while a known DBL approach is the Deep
Generative Model (DGM) [8]–[11].

From a Bayesian modelling perspective, there exist two
main types of uncertainty inside a neural network [12], namely
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Fig. 1. Graphical illustrations of the differences between ‘typical’ Deep
Learning (DL), Bayesian Deep Learning (BDL) and Deep Bayesian Learning
(DBL).

epistemic uncertainty and aleatoric uncertainty. Epistemic
uncertainty represents model uncertainty resulting from ig-
norance about model assumptions. It can be reduced when
more data are observed, as more information leads to better
model assumptions. Aleatoric uncertainty is known as data
uncertainty and reflects noise inherent in the data, i.e., the
deviation between ground truth and observed values. It cannot
be reduced, even if more data are observed, as the deviation
comes from the data itself. Aleatoric uncertainty can be
further categorised as: homoscedastic, which captures the data-
invariant noise across the whole dataset; and heteroscedastic,
which captures the data-dependent noise over each data in-
stance [2].

BNN is widely used for quantifying epistemic uncertainty
on the strength of its robustness to the distribution shift
of data [13]. However, for modern deep neural networks,
it is computationally expensive to build and train them as
BNNs. Alternatively, several works [2], [14] model epistemic
uncertainty in deep learning with BNN, via an approximation
technique named Monte Carlo Dropout (MCD) [15]. The
MCD only requires performing a Dropout operation [16]
before every weight matrix in a standard neural network, hence
eliminating the extra parameters cost for BNN. However, it is
still computationally expensive for real-time rendering, due to
sampling through a deep neural network many times at each
layer, which is regarded as a critical challenge [2].



Recently, amortised variational inference-based [8] DGMs
are proposed as an alternative approach to uncertainty quan-
tification [17], [18]. Compared to BNN, a DGM enables
computationally tractable uncertainty quantification in the
form of posterior analysis in the approximated latent space.
Hence it avoids expensive sampling as in MCD. Therefore, in
this paper, we explore using DGM for quantifying epistemic
uncertainty as an alternative replacement for MCD in four
multi-label text classification tasks. For quantifying aleatoric
uncertainty, we place a distribution on prediction outputs as
in [2], [14]. Our contributions thus include the following:

1) we present novel methods of representing epistemic and
aleatoric uncertainties conditioned on text;

2) we compare the effectiveness of modelling epistemic
uncertainty between DGM and the widely adopted
technique, MCD [2]; and show that the DGM-based
method achieves competitive performance, while the
DGM method is around 13 to 45 times faster than the
MCD method, depending on architecture;

3) we discuss various strategies for training a DGM for
epistemic uncertainty modelling in multi-label text clas-
sification tasks;

4) we show the benefits of modelling epistemic and
aleatoric uncertainties in four text classification tasks
with diverse neural network architectures.

II. RELATED WORK

Research on practical methods of quantifying uncertainty
in deep learning from a Bayesian perspective has only re-
cently been endeavoured [19]. Methods were initially pro-
posed to capture either epistemic uncertainty or aleatoric
uncertainty, alone. For epistemic uncertainty, the approach
involved a Bayesian approximation technique named Monte
Carlo Dropout (MCD) [15], based itself on a widely adopted
regularisation technique called Dropout [16]. MCD allows
Dropout to be considered equivalent to applying Variational
Inference (VI) [20]–[22] over the full parameter set in a
deep neural network. The posterior distribution can then be
approximated via multiple runs of the same model with
Dropout applied, using the same input data. This practical
tool for epistemic uncertainty estimation has been successfully
used on a wide range of applications, such as semantic seg-
mentation [23], language modelling [24], diabetic retinopathy
[25], transport data analysis [26], magnetic resonance imaging
(MRI) segmentation [27], text classification [28] and learning
analytics [29].

Most of the works mentioned above focused on modelling
epistemic uncertainty alone; and they overlooked the existence
of the aleatoric uncertainty, which is equally essential for
real-life applications [12]. To bridge this research gap, an
uncertainty quantification framework, jointly modelling these
two types of uncertainties, was proposed and applied first to
computer vision [2] and later extended to natural language
processing [14]. It modelled the heteroscedastic aleatoric
uncertainty, by placing a distribution on prediction outputs.
This distribution is jointly learnt with an additional neural

network, during the training process with the original network.
The epistemic uncertainty is modelled by creating a BNN
using MCD; however, when applying MCD on modern neural
network models, the computational cost in testing time induced
by sampling is a critical challenge [2].

Recently, the deep generative model (DGM) has been pro-
posed, as an alternative approach to uncertainty quantification.
It has been successfully applied to the inverse problem [17]
and to image denoising [18]. Compared with BNN, DGM
enables computationally tractable uncertainty quantification
in the form of posterior analysis in approximated latent
space. Hence, it avoids expensive sampling, as required by
MCD during testing time. DGM for uncertainty quantification
purposes has not been well studied in the NLP domain. To
address this research gap, we thus propose novel methods of
quantifying uncertainties conditioned on text. We compare the
performance of DGM epistemic modelling on text with the
widely adopted method, MCD. We demonstrate the benefits of
modelling uncertainties with our novel methods on four multi-
label text classification problems. To the best of our knowl-
edge, this is the first time uncertainty quantification methods
conditioned on text are proposed, allowing for efficient poste-
rior analysis. We apply them to diverse neural architectures
on text classification tasks with empirical experiments.

III. METHODOLOGY

This section presents a detailed explanation of our novel
methods of modelling uncertainties in deep neural networks.
We start with defining the problem and introducing our base-
line deep learning approach, and then we articulate how epis-
temic uncertainty and aleatoric uncertainty can be modelled.

We use three diverse neural network architectures (LSTM,
CNN, and Transformer) throughout our experiments. Since
our methods are invariant to specific architectures, we use an
encoder network, ‘Encoder()’, to represent a generic archi-
tecture choice. In the context of this study, it can refer to one
of these three network architectures; however, it is not limited
to the architectures mentioned above. Other neural networks
that can produce a fixed dimensional vector representation of
a given text could be interchanged as the ‘Encoder()’.

A. Problem Definition

A multi-label text classification task can be defined as: given
training data in the form of N data pairs {(xn, yn)}Nn=1,
with each pair consisting of the text (denoted by xn) and
their associated label (denoted by yn). For the nth pair,
xn = {w1, ..., wL} denotes the set of L words from the input,
where each word wl ∈ Vx is an instance of a discrete random
variable from the dictionary Vx; yn ∈ Vy , an integer, is an
instance of a discrete random variable from the set Vy . The
purpose is to find the right prediction ŷ∗, given new data x∗.

In the following descriptions, we omit the data pair index
n and use bold characters to represent vector form represen-
tations, i.e., x and y. These representations will be learnt in
an end-to-end fashion.



B. Deep Learning Approach (Baseline)

In a traditional deep learning (DL) approach, used here
as a baseline, we build a deep neural network to learn a
deterministic function as the approximation for the probability
p(ŷ|x) of the prediction ŷ, given input x. In our experiments,
we use a standard architecture setup for text classification.
Our architecture consists of an encoder network, as explained
above, followed by an affine transformation with an output,
where the dimension is equal to the associated classes.

Given an input sequence of words x = {w1, ..., wL}, the
encoder network outputs a representation:

xrep = Encoder(Ewl(x)) (1)

where Ewl is the learnt word embedding for the lth word
wl ∈ x; xrep is then fed through the affine transformation
for the prediction ŷ. With negative cross-entropy loss, for
a mutually exclusive K-class multinomial classification, we
have the following cost function:

θ∗ = argminθ

∑K
k=1(−y(k)) log ŷ(k) (2)

As suggested in [2], entropy (denoted as H) is a measure-
ment of prediction uncertainty1, and a low entropy indicates
the neural network is confident when making predictions.
Entropy can be calculated via the logits layer values:

H(p(ŷ)) = −
∑K

k=1 p(ŷ
(k)) log p(ŷ(k)) (3)

Note that in a standard deep learning approach, however,
neither epistemic nor aleatoric uncertainty is explicitly mod-
elled. This entropy value is an estimate of ‘uncertainty’ for ‘in-
domain’ data. A plethora of research has demonstrated that it
is easy to find or synthesise inputs for which a standard neural
network is highly confident, yet wrong [30].

C. Modelling Epistemic Uncertainty

To model epistemic uncertainty in a standard neural network
model, we introduce an additional unobserved random variable
z and place a distribution on it. This essentially turns our
model into a conditional variational auto-encoder (CVAE)
[10], [11]. CVAE has been explored as a supervised generative
model for text classification [31], [32]. In this paper, we follow
[17], [18], and study the effectiveness of CVAE as a tool to
model the epistemic uncertainty in a deep neural network. For
each observed data pair {x, y}, the joint distribution can be
factorised as follows:

pθ(y, z|xrep) = pθ(y|z, xrep)pθ(z|xrep) (4)

where θ is the set of neural network parameters and
xrep comes from the same encoder architecture as for the
standard deep learning approach. We use amortised variational
inference (amortised VI) [8] and adopt the same assumption
for continuous multivariate Gaussian with diagonalised co-
variance matrix as in [31], [32]. The evidence lower bound
(L(ELBO)) for the marginal likelihood is:

1We discuss applicability of entropy as uncertainty estimation in section V.

log pθ(y|x) ≥ L(ELBO) = Eqϕ(z)[log pθ(y|z, xrep)]

−DKL[qϕ(z|rep, y)||pθ(z|xrep)]
(5)

The first term of L(ELBO) is the reconstruction loss
and is measured via a multi-class cross-entropy loss. The
second term is the Kullback–Leibler (KL) divergence between
pθ(z|xrep) and qϕ(z). The variational family qϕ(z) here
approximates the posterior distribution as in Figure 2:

qϕ(z|xrep, y) = N (z|µϕ(xrep, y), diag(σ2
ϕ(xrep, y))) (6)

where we have:

µϕ(xrep, y) = l1(πϕ)

log σϕ(xrep, y) = l2(πϕ)

πϕ = gϕ(xrep, y)

(7)

where l1 and l2 are two separate affine transformation
functions from πϕ, gϕ is an MLP unit, and y is the one-
hot encoding form of the label. The latent variable z can
be reparameterised as z = µ + σ· ϵ, known as the ”repa-
rameterisation trick” [33], with sample ϵ ∼ N (0, I). We
adopt the inference and generation network for both p and
q distributions, similar to [31], [32], shown in Figure 2. For
the conditional distribution pθ(z|xrep), we model it as:

pθ(z|xrep) = N (z|µθ(xrep), diag(σ2
θ(xrep))) (8)

where we have:

µθ(xrep) = l3(πθ)

log σθ(xrep) = l4(πθ)

πθ = gθ(xrep)

(9)

Similarly, l3 and l4 are two separate affine transformation
functions from πθ, and gθ is an MLP unit. The KL term in
ELBO has a closed-form solution [8], and the first term of
ELBO can be calculated via a Monte Carlo approximation,
as:

Eqϕ(z)[log pθ(y|z, xrep)] ≈
1

M

M∑
m=1

log pθ(y|z(m), xrep) (10)

The Monte Carlo approximation term here is an unbiased
estimator. z(m) is the mth sample from the probability
distribution p(z), and M is the total number of samples.
We use M = 1 during training as per standard practice for
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Fig. 2. Graphical model for generation network (left) and inference network
(right) for CVAE, using amortised VI [8].



amortised VI [8] and adopt maximum a-posteriori (MAP) as
estimation during testing. During training, z is sampled from
qϕ(z|xrep, y) and during testing, MAP is calculated based
on pθ(z|xrep). Given our prediction ŷ, the cost function is:

θ∗ = argmin
θ,ϕ

K∑
k=1

(−y(k)) log ŷ(k)

+βDKL[qϕ(z)||pθ(z|xrep)]

(11)

We obtain the real L(ELBO) when β = 1. CVAE models
suffer from posterior collapse as discussed in [34]. Here,
‘posterior collapse’ refers to the issue where the latent variable
z does not contribute much to the model output. We explore
three different methods to address this issue during our training
in the later section (Experiment 1).

Compared with the Monte Carlo Dropout (MCD), CVAE
enables computationally tractable uncertainty quantification in
the form of posterior analysis in (approximated) latent space.
To calculate the epistemic entropy, we use the same formula
as in equation 3. Due to the isotropic Gaussian assumption for
the latent space, the prediction entropy for a single data point
can be calculated via posterior analysis in the latent space.
As opposed to MCD, CVAE allows more efficient estimates,
without computationally expensive sampling [2].

D. Modelling Heteroscedastic Aleatoric Uncertainty

We follow [2], [14] and focus only on heteroscedastic
aleatoric uncertainty. To model the heteroscedastic aleatoric
uncertainty in a standard neural network model, we place a
distribution on the network output and define the following
generative process:

µya = l5(ŷ)

σya = l6(ŷ)

ya ∼ N (µya , σya)

y ∼ Categorical(ya)

(12)

where l5 and l6 are two separate affine transformation
functions and, during training, the empirical mean (ȳa) can
be calculated based on sampling. For the aleatoric uncertainty,
we have the following loss function, where K is the number
of class labels:

θ∗ = argmin
θ

K∑
k=1

(−y(k)) log ȳa
(k) (13)

To quantify the aleatoric uncertainty, we can also calculate
the entropy value based on the layer value of ȳa. Note that
here ya is not learnt through variational inference, hence does
not measure the epistemic uncertainty of deep learning. Thus,
the entropy here only represents the uncertainty associated
with the noise in the data. To calculate the aleatoric entropy,
we use the same formula as in equation 3, but replace ŷ
with ya. Emulating the epistemic modelling case, we use the
analytical solution to calculate individual aleatoric uncertainty.

IV. EXPERIMENTS

A. Data

We conduct experiments on three public text classification
benchmark datasets, presented in [35]. These datasets can be
used in two different types of tasks: (1) topic classification
(using AG‘s News and DBPedia) and (2) sentiment analysis
(using Yelp-P). We denote these datasets as ‘AG’, ‘DB’,
and ‘Y-P’, respectively, shown in Table I, II, III, IV, and
V. A summary of the datasets is provided in Table I. In
our experiments, we use the full testing data set (hence the
difficulty of the task is the same) and use only partially the
original training data, split as our training set, which we will
explain in the following section. We set the maximum token
length as 110 (by removing the tokens beyond the first 110) for
the ‘AG’ and ‘DB’ datasets; and 450 (by removing the tokens
beyond the first 450) for the ‘Y-P’ dataset. The maximum
token length is selected based on Table VIII.

B. Vocabulary and Sampling

Before performing sampling, we first create the vocabulary
for each dataset, which is shared across all the models.
We create each vocabulary based on a minimum frequency
of 5 and a maximum size of top 20K tokens from the
complete training data points, with four additional special
tokens: < pad >, < unk >, < bos >, and < eos >.
These tokens are used to denote batched computation padding,
out-of-vocabulary words, the beginning and the end of the
sequence, respectively.

We first perform stratified sampling on the original data
points to retrieve our class-balanced data points (we sample
20K points per class in each task), and then we apply
again stratified sampling, to further split these data points
into the class-balanced training set and validation set, with
a percentage of 80% and 20%, respectively.

TABLE I
DATASET SUMMARY

Dataset Training Validation Testing Number of Classes
AG 64,000 16,000 7,600 4

DBP 224,000 56,000 70,000 14
Y-P 32,000 8,000 38,000 2

C. Experimental Setup

We conduct experiments over three diverse neural network
architectures as the encoder network: LSTM [36], CNN [37],
and Transformer [38]. For epistemic uncertainty modelling and
aleatoric uncertainty modelling, we add ‘+EP’ and ‘+AL’ to
the model name, respectively, in the tables below (Tables III,
IV and V).

To compare with the widely adopted epistemic uncertainty
modelling technique [15], we implement the Monte Carlo
Dropout technique for each network, denoted by the addition
of ‘+MC’, following the implementation guideline in [14]. We
fix the dropout rate as 0.5 based on our empirical experiments.
We use Adam [39] as our optimiser in all experiments. The
batch size is set to 32 and all training runs for a maximum of



10 epochs. All experiments are conducted on a computer with
an Ubuntu operating system and a single RTX 2080 Ti GPU.

Next, we introduce the setup of the three model architectures
(LSTM, CNN, and Transformer) below. Each architecture is
based on a widely adopted model for text classification tasks
in the NLP domain.

1) LSTM: For the LSTM experiment, we use an embedding
size of 56 for each unique word and build a single layer
bi-directional LSTM (Bi-LSTM) network architecture with a
hidden dimension of 56 (resulting in 112 latent dimensions).
We use a size of 56 for the CVAE latent variable z. We use
the last hidden state of the Bi-LSTM network as the xrep.

2) CNN: For the CNN experiment, we apply the 2d-
convolution operation (over sequence length and embedding
dimension) as in [40] on our text input and use learnable
filter sizes of 1, 2 and 3 to represent ‘unigram’, ‘bigram’, and
‘trigram’ information from the text sequence. We use a max
pooling operation over each filter output to alleviate various
sequence length issue and concatenate them as xrep. For each
2d-convolution operation, we use an input channel size of 1
and output channel size of 56. We use an embedding size of
56 for each unique word and a dimension of 56 for the CVAE
latent variable z for our epistemic modelling experiments.

3) Transformer: For the Transformer experiment, we use
the same architecture setup as in [38], but with a stack of
N = 1 encoder layer and with no decoder (as it is not
required for text classification). For a detailed description of
the transformer network, please refer to [38]. We use the same
positional encoding methods (sine and cosine) as in [38] and
use a hidden dimension of 56, feedforward neural network
intermediate layer dimension of 256, and 8 attention heads.
This grants us an output dimension of 56, and we use the same
size (56) for the CVAE latent variable z. As the transformer
encoder creates a sequence of contextual representations for a
given input sequence, we pre-process text by adding additional
special tokens < bos > and < eos >, before and after the
sequence input. We use the output at the < bos > position as
xrep, which is similar to how a BERT model [1] is used for
text classification.

4) Model Architecture Complexity: For a fair comparison,
we set each model architecture with a similar complexity in
terms of the number of trainable parameters. For the LSTM,
CNN, and Transformer models defined in the experiments,
there are around 1.4M , 1.5M , and 1.4M trainable parameters,
respectively (calculated based on the epistemic uncertainty
experiment). There are slight variations in the number of
parameters in other experiments (Table III, IV and V, results
without the ‘+EP’ flag), but the model complexities always
remain on the same scale.

D. Experimental Run

For reporting results, we first select the best learning rate
from among 1e−2, 1e−3, 1e−4 and 1e−5, based on the mean
average run from three random seeds: 1000, 2000, and 3000.
Then, we run each model 3 times with the best learning rate
and use a seed from 1111, 2222, and 3333 to initialise model

parameters. For each run of the model, we use the training,
validation, and testing sets as shown in Table I. We evaluate
the model performance on the validation set after each epoch
and save the best model based on the F1 score, calculated over
the validation set. For testing, we apply the best performance
model on the test set and report the evaluation metric.

Based on our experiments, the optimal learning rates for
our models are 1e−3 and 1e−4 in general, while most of the
time 1e − 3 performs the best. This is thus the learning rate
we use when reporting the results, unless specified otherwise.
During training, we use a gradient clip of 1, to avoid gradient
overflow.

E. Evaluation Metric

We report the mean and the variance (in brackets) amongst
three runs on the standard evaluation methods for the text
classification task (macro-averaged F1) in Experiment 1 and
Experiment 2. For the F1 scores, all values are reported in
percentage. We report additional entropy measurement [2]
calculated with Equation 3 over the test set in Experiment
2. For the entropy measurement, we report the mean average
over the three runs.

V. RESULTS AND DISCUSSION

A. Experiment 1: Posterior Collapse

In the first experiment, we address the commonly encoun-
tered problem in CVAE training, i.e., the posterior collapse
[34], [41], [42], in the context of text classification. We com-
pare three different methods for training a CVAE, including
using standard KL, KL Annealing, and KL Coefficient. We
apply each of the three methods on the epistemic uncertainty
modelling task over three diverse architectures. Here, we
briefly describe these three methods:

1) Standard KL
During training, we use the standard CVAE formula (as
in Equation 11) with β = 1 as the KL term.

2) KL Annealing
During training, we apply KL annealing on β, as in [34],
[41], to induce the cost function and thus maintaining a
substantial KL value. In all of our experiments, we run
a total of 10 epochs. Specifically, we linearly anneal β
from 0 to 1 over the first 5 epochs and then use value of
1 for the remain 5 epochs. The KL annealing essentially
forces the model to explore and utilise the information
from the latent variable z [42].

3) KL Coefficient
During training, we use a reduced β = 0.2 for the KL
term as in [34], [43]. This allows us to adjust the weight
of the KL penalty related to the reconstruction loss.

Experimental results on macro-average F1 for the LSTM,
CNN, and Transformer architectures, respectively, are pre-
sented in Table II. Training with standard KL, KL Annealing,
and KL Coefficient are denoted as ‘EP (β = 1)’, ‘EP (Ann.)’,
and ‘EP (Coe.)’, respectively. Throughout the experiments, we
have discovered that training with the KL annealing method
provides us with the best F1 score in general on both mean



TABLE II
POSTERIOR COLLAPSE EXPERIMENT ON LSTM, CNN AND

TRANSFORMER ARCHITECTURES. RESULTS PRESENTED IN MACRO
F1-SCORE BASED ON THE TEST DATASET.

Model AG DBP Y-P
LSTM (%)

EP (Ann.) 91.13 (0.33) 98.36 (0.08) 91.70 (0.23)
EP (Coe.) 90.94 (0.44) 98.33 (0.04) 90.69 (0.12)

EP (β = 1.) 91.12 (0.39) 98.33 (0.02) 91.52 (0.15)
CNN (%)

EP (Ann.) 91.38 (0.30) 98.22 (0.04) 92.69 (0.01)
EP (Coe.) 91.42 (0.52) 98.15 (0.08) 92.21 (0.16)

EP (β = 1.) 91.47 (0.28) 98.15 (0.02) 92.33 (0.21)
Transformer (%)

EP (Ann.) 91.29 (0.15) 97.52 (0.14) 92.16 (0.10)
EP (Coe.) 91.03 (0.19) 97.68 (0.01) 91.88 (0.11)

EP (β = 1.) 91.50 (0.29) 97.63 (0.04) 91.99 (0.26)

and variance across three random runs with different seeds
(see Table II) when the MAP decoding method is adopted,
especially for the LSTM architecture, which is reported sim-
ilarly in literature [34], [41], [42]. Based on results shown in
Table II, we adopt the KL Annealing training technique in
the follow-up experiments, although it requires an additional
hyperparameter tuning (rate for linear annealing reduction).

To demonstrate the efficacy of the results, we apply the
Wilcoxon signed-rank test on the results (KL Annealing
against the other two in Table II) from multiple 3 runs of
our models. In terms of the AG dataset, the F1 score is
better, although not statistically significant (p > .05) for
Transformer; and statistically significantly better (p < .05)
for LSTM and CNN. For the DB dataset, F1 is better, but not
statistically significant (p > .05) for LSTM and CNN; and not
better for Transformer. For the YP dataset, F1 is statistically
significantly better (p < .05) for LSTM and Transformer; and
better, but not statistically significant (p > .05), for CNN.

B. Experiment 2: Uncertainty Modelling

In the second experiment, we apply uncertainty modelling
over the four datasets with three diverse neural network
architectures. For epistemic uncertainty modelling, we use
the KL annealing technique during training, followed by the
results in experiment 1 (Table II). The experimental results
on macro-average F1 and entropy for LSTM, CNN, and
Transformer architectures are presented in Tables III, IV, and
V, respectively. The results suggest that uncertainty plays an
important role in text classification tasks. In general, modelling
uncertainty, as we observe, mostly comes with a benefit. We
use bold font to denote when results are better than the deep
learning baseline models, and use underline to denote the best
performance methods in Tables III, IV, and V.

1) Epistemic Uncertainty: Compared with the ‘+MC’
method using Monte Carlo dropout, we observe that our
epistemic uncertainty modelling method ‘+EP’ achieves com-
petitive or better performance across most experiments (based
on mean and variance) for the F1 score. However, the ‘+EP’
model grants much lower entropy in general, compared to
the MC dropout method, as shown in Tables III, IV, and V.

TABLE III
UNCERTAINTY MODELLING RESULTS FOR LSTM MODEL, RESULTS

PRESENTED IN MACRO F1-SCORE AND ENTROPY BASED ON THE TEST
DATASET.

Model AG DBP Y-P
Macro-F1%

LSTM 91.17 (0.28) 98.39 (0.03) 91.20 (0.17)
LSTM + EP 91.13 (0.33) 98.36 (0.08) 91.70 (0.23)
LSTM + MC 91.49 (0.21) 98.58 (0.02) 91.74 (0.35)
LSTM + AL 91.16 (0.20) 98.40 (0.03) 91.20 (0.29)

Entropy (Ave.)
LSTM 0.1866 0.0360 0.2166

LSTM + EP 0.0434 0.0262 0.0338
LSTM + MC 0.1766 0.0193 0.1816
LSTM + AL 0.2359 0.0315 0.1589

TABLE IV
UNCERTAINTY MODELLING RESULTS FOR CNN MODEL, RESULTS

PRESENTED IN MACRO F1-SCORE AND ENTROPY BASED ON THE TEST
DATASET.

Model AG DBP Y-P
Macro-F1%

CNN 91.49 (0.27) 98.32 (0.06) 92.49 (0.12)
CNN + EP 91.38 (0.30) 98.22 (0.04) 92.69 (0.01)
CNN + MC 91.77 (0.18) 98.39 (0.01) 92.20 (0.23)
CNN + AL 91.70 (0.37) 98.35 (0.06) 92.40 (0.10)

Entropy (Ave.)
CNN 0.1960 0.0327 0.1619

CNN + EP 0.0651 0.0203 0.0240
CNN + MC 0.2014 0.0379 0.1607
CNN + AL 0.1762 0.0357 0.1261

The entropy value is regarded as a critical measurement of
information uncertainty for the predictive distribution [2]. The
lower the entropy, the more confident the classifier is in its
decision. ‘+EP’ results in a lower entropy than the ‘+MC’
method in general, demonstrating its effectiveness in reducing
epistemic uncertainty.

TABLE V
UNCERTAINTY MODELLING RESULTS FOR TRANSFORMER MODEL,

RESULTS PRESENTED IN MACRO F1-SCORE AND ENTROPY BASED ON THE
TEST DATASET.

Model AG DBP Y-P
Macro-F1%

Transformer 91.32 (0.16) 97.88 (0.13) 92.10 (0.03)
Transformer + EP 91.29 (0.15) 97.52 (0.14) 92.16 (0.10)
Transformer + MC 91.43 (0.18) 97.84 (0.14) 91.87 (0.32)
Transformer + AL 91.41 (0.22) 97.89 (0.01) 92.07 (0.06)

Entropy (Ave.)
Transformer 0.2274 0.0543 0.2548

Transformer + EP 0.0592 0.0341 0.0319
Transformer + MC 0.2106 0.0339 0.2164
Transformer + AL 0.1969 0.0444 0.1559

To demonstrate the efficacy of the results, we apply the
Wilcoxon signed-rank test on all the results (compare baseline
model, i.e. LSTM, CNN, and Transformer; and with uncer-
tainty modelling, i.e.‘+EP’) from the multiple runs of our
models. The F1 score is generally competitive, or better than
the baseline model. The entropy value is mostly statistically
significantly better (p < .05), in comparison with the baseline



TABLE VI
HIGH VERSUS LOW ALEATORIC UNCERTAINTY EXAMPLES FOR YELP-P

DATASET.

High Aleatoric Uncertainty
The price is a little high for me. They don’t give enough
bean sprouts without asking for more. The pho broth is
a little too sweet for me also.
I like their beer ... seriously.
Was a great place to eat, now food is greasy, and it doesn’t
taste like it used to. Used to have a more of a homemade
taste, now tastes like Costco business center. Sad. I loved
going here .
Low Aleatoric Uncertainty
I went there last night and I ordered the calamari. It had
no taste and was very expensive. And the service was not
very good. I will not be back
Oh my... dont like the food here. Tried the Pad thai and the
chicken fried rice ... the pad thai was disgusting and the fried
rice was not < unk > either ... wont be going back ... ugh
Wow this place has gone down hill. Old smelly rooms.
Service is horrible

model. When combining results from both the F1 score and
entropy value, we can claim that it is beneficial to model
epistemic uncertainty in deep neural networks.

2) Aleatoric Uncertainty: Compared with the baseline
model, our aleatoric uncertainty modelling method ‘+AL’
achieves competitive or better performance across most experi-
ments (based on mean and variance) for the F1 score. Again,
for the Wilcoxon signed-rank test on all results (comparing
baseline model, i.e. LSTM, CNN, and Transformer; with
uncertainty modelling, i.e.‘+AL’) from the multiple runs of
our model, F1 is better, although not statistically significantly
so. The entropy value is mostly statistically significantly better
(p < .05), in comparison to the baseline model. When com-
bining results from both the F1 score and entropy value, we
can claim that it is beneficial to model aleatoric uncertainty in
deep neural networks. Additionally, since modelling aleatoric
uncertainty only requires tiny changes on the cost function
during training, it is inexpensive and hence is recommended
for text classification tasks whenever possible.

To illustrate what we modelled for aleatoric uncertainty, we
provide examples of high and low uncertainty of data in the
Yelp-P dataset, presented in Table VI (based on the LSTM
model). The Yelp-P data is used for the polarised sentiment
analysis task (negative or positive). We can observe that the
low aleatoric uncertainty examples contain clear sentiment
words, such as ‘not very good’, ‘dont like’, and ‘horrible’. On
the contrary, the high aleatoric uncertainty examples contain
vague sentiment words, such as ‘little high’ and ‘little too
sweet’; or word with vague meaning, such as ‘seriously.’; or
even sentiment words with contradictory meanings, such as
‘great’, ‘greasy’ and ‘sad’ concomitantly. These observations
align with the results presented in [14].

C. Discussion on Entropy as Uncertainty Estimation

In this paper, entropy is used as an uncertainty estimation,
as in [2], [14]. However, the reason for choosing entropy
as the measurement is not clear in the literature, so here

we discuss briefly the reason and whether it is applicable.
From a Bayesian modelling perspective, uncertainty is best
presented as the variance of the density function for the
posterior distribution in regression tasks. In this paper, we
instead explore classification tasks, and thus the variance is
best represented as the entropy measurement over the posterior
distribution, as in equation 3. In this case, a lower entropy
value indicates a decrease in classification variance for a
predictor, which represents a decrease in uncertainty. However,
a lower entropy value only can not denote an improvement in
model performance, so we additionally adopt the F1 score as
another metric measurement.

TABLE VII
RUN TIME RESULTS FOR UNCERTAINTY MODELLING FOR LSTM, CNN
AND TRANSFORMER MODELS, RESULTS PRESENTED IN SECONDS BASED

ON THE TEST DATASET (IN BRACKETS THE NUMBER OF TIMES IT IS
FASTER, COMPARED TO ITS RESPECTIVE BASELINE MODEL).

Model AG DBP Y-P
LSTM (s)

LSTM 0.700 7.746 12.607
LSTM + EP 0.834 (1.08) 8.132 (1.04) 14.51 (1.15)
LSTM + MC 26.990 (34.91) 299.867 (38.70) 582.844 (46.20)
LSTM + AL 0.783 (1.01) 8.034 (1.03) 12.775 (1.01)

CNN (s)
CNN 0.278 2.426 1.877

CNN + EP 0.358 (1.28) 3.077 (1.26) 2.100 (1.11)
CNN + MC 3.597 (12.90) 33.350 (13.7) 46.011 (24.50)
CNN + AL 0.282 (1.01) 2.550 (1.05) 1.887 (1.01)

Transformer (s)
Transformer 0.412 4.186 19.689

Transformer + EP 0.439 (1.06) 4.421 (1.05) 20.185 (1.02)
Transformer + MC 11.185 (27.10) 129.108 (30.80) 848.486 (43.10)
Transformer + AL 0.415 (1.01) 4.604 (1.09) 20.878 (1.06)

D. Analysis on Run Time Efficiency

Based on information provided for the experimental setup
in sections IV-C and IV-C4, we present an analysis on the
run time efficiency in Table VII. In particular, we present the
run time for each testing set and the number of times it is
faster than its base model (i.e. LSTM, CNN, and Transformer).
We also underline the multipliers for ‘+MC’ and ‘+EP’.
We observe that, in general, modelling aleatoric uncertainty
(‘+AL’) does not increase run time during testing. However,
with epistemic uncertainty (‘+EP’ and ‘+MC’), the current
widely adopted approach (‘+MC’) requires significantly more
time, as noted in [2]. While our approach barely changes the
run time and is a lot faster (between 13 to 45 times faster).

VI. CONCLUSION

This paper presents novel uncertainty quantification meth-
ods that allow efficient analysis of posterior inference. We
demonstrate their effectiveness on four multi-label text classifi-
cation tasks. Our framework allows efficient posterior analysis
and our experiments affirm the benefits of modelling uncer-
tainty. We show the consistency of our results over multiple ex-
periments with diverse neural network architectures. Our work
can serve as a baseline for applying uncertainty quantification
to text classification tasks and contributes to further research
in this domain.
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APPENDIX A
DATASET STATISTICS

TABLE VIII
TOKEN LENGTH STATISTICS, ALL NUMBERS ROUND TO INTEGER.

Model Mean Standard Deviation Min Max
AG 45 13 12 214
DBP 57 26 3 1500
Y-P 156 143 1 1202


