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Abstract—In recent years, the importance of reducing car-
bon dioxide (CO2) emissions has increased. With the use of
technologies such as artificial intelligence, we can improve the
way households manage their energy use to decrease cost and
carbon emissions. In this paper, we use the Spectral Entropy and
Instantaneous Frequency-based Bidirectional Long Short Term
Memory (SE-IF BiLSTM) method so the home energy manage-
ment system (HEMS) can learn from historical data of energy
usage, as well as the preferred energy consumption patterns for
the user. With this data, a multi-objective optimisation problem
(MOP) that considers cost, CO2 emissions and discomfort is
formulated to schedule appliances in different scenarios. These
scenarios include households with battery storage systems and
with or without renewable energy sources. We compared the
results by using multi-objective immune algorithm where we
found a 10.06% reduction in cost and 20.56% reduction in CO2
emissions by using the proposed method.

Keywords—appliance scheduling; home energy management
systems; multi-objective optimisation

I. INTRODUCTION

In 2019, the UK government passed a net-zero emission law,
which aims to bring all greenhouse gas emissions to net-zero
by 2050 [1]. While a big part of the energy produced comes
from fossil fuels, there has been an increase in green energy
sources. In 2021, we saw an increase of 23% and 14% in
solar and wind energy generation, respectively [2]. This helps
to balance the carbon dioxide (CO2) emissions generated by
the fossil fuels [3].

In recent years, traditional power grids have been transi-
tioning to become smart grids, that enable bidirectional flows
of both power and data.. This has allowed an increase in
the adoption of renewable energy sources (RES) and battery
storage systems (BSSs) in households [4].
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As we adopt new technologies and capabilities, new chal-
lenges arise for home energy management systems (HEMSs).
With the increase of appliances used in households and the
adoption of RES, there is a need to find an optimal way of
managing them to reduce CO2 emissions generated while also
reducing the economical cost and discomfort for the users [5].

Appliance scheduling is a technique used to plan the use of
household appliances at certain times that the HEMS finds
appropriate. There are many researches in this area in the
literature, focusing on reducing cost and discomfort. In [3],
an appliance scheduling technique was developed to reduce
cost under a real time pricing (RTP) scheme. In [6], Ali et al.
developed techniques for reducing cost while also reducing
user discomfort. In [7], Liu et al. developed a technique based
on Deep Q-learning to perform the scheduling of the appli-
ances. In [8], a mixed integer linear programming problem
was formulated to schedule appliances on a day-ahead scenario
considering different types of users.

In [9], a Sequential Forward Selection (SFS) method was
used to identify appliances and then the results were evaluated
with NSGA-II to find a pareto-optimal front. While most of
the research found in the literature is based on user inputs for
preferences for the scheduling, an approach without user input
or extensive metering data has not been widely discussed.
It is important to propose appliance scheduling even when
minimal information is provided by the smart meter to the
utility company. With the use of the SE-IF BiLSTM method
developed in our preliminary work [10], we can robustly
identify appliances in previous usage by the user without the
need of any user input.

Compared with existing research, the main contributions of
this paper are as follows:

• A novel appliance scheduling method is proposed that
uses the previously developed SE-IF BiLSTM appliance
classification method. This allows the HEMS to learn
from historical data by accurately detecting and classi-
fying appliances in order to schedule them in the future.

• A multi-objective optimisation problem is formulated that
considers cost, CO2 emissions and discomfort reductionXXX-X-XXXX-XXXX-X/XX/$XX.XX ©20XX IEEE



for the user when scheduling appliances in a household
with RES generation and BSS.

• Comparison of results is provided to validate the multi-
objective immune algorithm and multi-objective genetic
algorithm.

II. SYSTEM MODEL

A. Battery storage model

The battery storage model assumes the use of a Powervault
3 battery, which has a capacity of 4 kWh and a discharge rate
of 2 kW. It is assumed that the battery is at its minimum level
at the beginning of the day. The household battery storage
level can be calculated with the following equations:

SOC(0) = 0, (1)

SOC(t) = SOC(t− 1) + ∆t · Pbat(t), t = 1...T, (2)

where SOC represents the state of charge of the battery at
time t, ∆t represents the time interval and Pbat represents the
power drawn by the battery at time t.

B. RES model

The original energy consumption information in the dataset
is for houses in the south of England, and these houses do not
include any type of RES generation. The RES model uses the
information from the European solar radiation database Pho-
tovoltaic Geographical Information System of the European
Commission [11] to calculate solar irradiation.

It is assumed that the house has 6 SunPower Maxeon 3
photovoltaic panels that have a solar efficiency of 0.212 at
a slope of 35° and azimuth at 0°. Each panel is 1.046m by
1.69m in size, making a total area of 26.5161m2. The power
generation from solar panels can be given by [12]:

PPV (t) = η · E(t) ·Ac, (3)

where PPV is the power generated at time t, η is the solar
efficiency, E is the solar irradiation received in W/m2 at time
t and Ac is the area of the panels.

C. Load consumption model

The load demand model uses the information from the
UK DALE dataset [13], which is from an End-terrace house
in Southern England. Depending on the month selected, the
power consumption of the corresponding average aggregate
power is obtained. The output of the model is Pload(t), which
is the base power load demanded at time t.

D. Appliance scheduling model

We use the dishwasher, washing machine and electric hob
consumption data obtained from the pre-processing done to
the load demand data, explained further in Section III.

By using the SE-IF BiLSTM method, we identify and
classify the appliances in previous days to obtain their average
consumption data and preferred usage times. These appliances
do not have a constant power consumption, since their cycles
demand different amounts of power at different times. We

TABLE I
APPLIANCE SETTINGS

Appliance δ 1 Tpref 2 Tduration Power rating (Watts)
Washing Machine 2 12:00 2h 150 - 650

Dishwasher 3 21:00 2h 520 - 910
Electric Hob 3 17:00 0.5h 1000

obtained the average length of duration of each of these
appliances operations and average consumption per hour, to
better simulate the variation in power during their operation.

Let Tstart be the time at which the optimisation algorithm
schedules the appliance to start operations; we have:

0 ≤ Tstart ≤ T − Tduration, (4)

where Tduration denotes the duration of the appliance usage.
To calculate the load used by the schedulable appliances at

time t, we can use the following equation:

P app
load(t) =

M∑
m=1

Pm(t), (5)

where P app
load is the sum of power used by the schedulable ap-

pliances at time t, M is the number of schedulable appliances
and Pm represents the power load of appliance m.

To calculate the total scheduled load at time t, the system
uses the following equation:

PSCH
load (t) = Pload(t) + P app

load(t), (6)

where PSCH
load represents the sum of the base load Pload and

the load of all schedulable appliances P app
load.

E. External power grid model

The household gets power supply from the external grid
to fulfill the load demand, together with the use of the power
generated by the photovoltaic panels and the power taken from
the battery storage. To calculate the power taken from or sent
to the grid at time t, the system uses the following equation:

Pgrid(t) = PSCH
load (t)− PPV (t) + Pbat(t), (7)

which also ensures that the load demand is always met.

F. Cost model and formulation

The cost model is based on the purchase and sale price
information from previous years from the British Energy
Trading and Transmission Agreements [14]. In this research,
it is assumed that this information is the one that will be
happening during the selected day to simulate. This model
uses an Hourly Real Time Price structure, where the price
of electricity varies on an hourly basis and remains constant
during the entire hour duration. Costs are also calculated
considering the current month or the one selected by the
user. Finally, this model has 2 outputs: Csell and Cbuy , which
represent the unit price of selling energy to the grid and buying
energy from the grid, respectively. Using these values, we
can calculate the cost of the electricity bill in British Pounds,
denoted by the following equation:



Cost =

T∑
t=1

∆t · Pgrid(t) · Cgrid(t), (8)

where Cgrid can be given by

Cgrid(t) =

{
Cbuy(t), if Pgrid(t) ≥ 0

Csell(t), otherwise
(9)

G. CO2 emissions model and formulation

The CO2 model is based on the carbon emission intensity
(CEI) data obtained from National Grid Group UK. We
collected data from 2020 to calculate the hourly averages of
the carbon emission intensity each month. This model outputs
CEIbuy , which represents the intensity of the carbon emissions
generated by purchasing electricity from the grid. Using these
values, we then calculate the amount of CO2 emitted in grams:

CO2 =

T∑
t=1

∆t · Pgrid(t) · CEIgrid(t) (10)

where CEIgrid can be given by

CEIgrid(t) =

{
CEIbuy(t), if Pgrid(t) ≥ 0

0, otherwise.
(11)

H. User discomfort model and formulation

The user discomfort model is based on the data obtained
from the SE-IF BiLSTM model [10]. The model learns the
average starting time of the appliances in the previous days.
The discomfort is calculated considering the time of use and
the discomfort coefficient. The discomfort coefficient, denoted
by δ, is calculated for each appliance, depending on how much
its starting time varies during the analysed days by the SE-
IF BiLSTM model. If the appliance is mostly used at the
same time every time, it is assumed that using it at a different
time would generate a significantly bigger discomfort than an
appliance that has a varying preferred time of use. Lastly, the
further away the starting time is from the preferred starting
time, the more discomfort it generates for the user.

The system then calculates the total discomfort by using the
following equation:

Disc =

M∑
m=1

δ(m) · [Tstart(m)− Tpref (m)]2 (12)

where M is the number of schedulable appliances, δ(m)
represents the discomfort coefficient of appliance m and
Tpref (m) represents the preferred starting time of appliance
m. These settings can be found in Table I.

III. METHODS

A. Multi-objective Problem Formulation

The first objective is to minimise the economical cost of
the electricity used. The second objective is to minimise the
amount of CO2 produced. The third objective is to minimise

the user discomfort when scheduling the schedulable appli-
ances. The resulting multi-objective problem (MOP) can be
formulated as:

min
Pbat,T

m∈M
start

α · Cost+ β · CO2 + γ ·Disc (13)

subject to (2), (4) and (7), where α, β and γ represent the
weights of each cost function and α + β + γ = 1.

B. Data acquisition and pre-processing

The appliance consumption data was obtained from the UK
DALE (Domestic Appliance-Level Electricity) dataset [13],
which consists of 1/6 Hz individual appliances and aggregate
power readings. Data consists of UNIX timestamp and the
power reading in Watts. Since the original data presents a
reading every 6 seconds, we averaged the consumption per
every minute for simplicity purposes.

C. SE-IF BiLSTM method for appliance classification

In [10], we developed the SE-IF BiLSTM appliance classi-
fication method, which allows us to train a BiLSTM neural
network that is able to identify and classify appliances in
historical data, as well as preferred usage times, by extracting
features such as spectrogram frequency bands, Mel spectro-
gram, instantaneous frequency, spectral entropy and signal
variation. In order to get the appliance consumption data for
the SE-IF BiLSTM training, we used the individual data from
the dataset. Considered appliances include three individual
appliances: washing machine, dishwasher and electric hob.
In order to train the neural network to identify the moments
where multiple appliances are being used at the same time,
we generated different combinations based on the individual
appliances consumption data.

D. Multi-objective Immune Algorithm

The multi-objective immune algorithm (MOIA) [15] is an
optimisation method inspired by the gene operations of the
human body. It uses antibodies, which are points in the deci-
sion variable space. Each iteration, the dominated antibodies
are removed, allowing non-dominated antibodies to mutate
and diversify, generating more dominated antibodies which are
removed too. After that, a condition is used to erase infeasible
antibodies. This process repeats until it reaches the maximum
number of iterations. At the end, approximate Pareto optimal
solutions are obtained.

E. Multi-objective Genetic Algorithm

The multi-objective genetic algorithm (MOGA) is a meta-
heuristic optimisation method based on the natural selection
system. It is widely used for complex optimisation and search
problems. First, it generates a random population of values
between the established limits. Second, it calculates the fitness
of the individuals. If the stopping criterion is not met, it selects
values as parents, which then crossover to produce children.
These children mutate and their fitness is then again calculated,
generating new population. This process is repeated until the
stopping criterion is met [16].



Fig. 1. Pareto Frontier evaluating cost, CO2 emissions and discomfort,
obtained after evaluating the MOIA.

F. Finding the best compromised solution

We used the gray relational analysis algorithm to find the
best compromised solution of the Pareto Frontier (Fig. 1). This
algorithm compares the gray relational coefficient, which is the
similarity between each objective value of each solution and
the best value of each objective [17].

IV. RESULTS AND DISCUSSION

A. Simulation setup

For the simulations, we assume four different scenarios and
three different cases. The parameteres used for the simulations
can be found on Table II.

B. Simulation Scenarios

1) RES and Scheduling: In this scenario, the user uses RES
power generation and power taken from the grid to meet the
load demand. The user wants to schedule appliances in order
to reduce the bill cost and CO2 emissions.

2) RES and No Scheduling: In this scenario, like in the
previous one, the user has access to RES power generation,
but does not want to schedule any appliances, getting the most
comfort.

3) No RES and Scheduling: In this scenario, the user does
not have any kind of RES power generation, thus receiving
all the needed power from the grid, but wants to schedule
appliances in order to save money and produce less CO2
emissions.

4) No RES and No Scheduling: In this scenario, like in the
previous one, the user does not have RES power generation.
But this time, the user does not want to schedule the appli-
ances, seeking the most comfort by having them operate at
their preferred times.

TABLE II
SIMULATION SETUP

Control parameter Value
Location 50°50’16.8”N 0°08’13.2”W
Month June
Time slots 24
Schedulable appliances 3
Solar Panels 6 SunPower Maxeon 3
Battery Max Capacity 4 kWh
Battery Max Charge/Discharge Rate 2 kW

C. Simulation cases

1) Case 1 based on cost minimisation: In this case, the user
aims to minimise the economical cost of the electricity bills.
When the prices are low, or when the RES generation is high,
the battery is charged. At times of high generation, the user
can sell energy back to the grid to aid minimise cost. When the
prices are high during the day, the user can rely on the energy
stored in the battery to meet the load demand. In Scenario 1,
the algorithm schedules the appliances to start at 11 AM for
the washing machine, 1 PM for the dishwasher and 12 PM for
the electric hob, when the power generation is high.

2) Case 2 based on CO2 emissions minimisation: In this
case, the user aims to minimise the CO2 emissions generated
by their load. When the CEI is low or the RES generation
is high, the system charges the battery. When the CEI is
high, usually in the afternoon hours, the stored energy in the
battery is used instead. In Scenario 1, the algorithm schedules
the appliances to start at the same time as Case 1, with the
difference that the system only starts charging the battery when
the RES generation is high enough around noon.

3) Case 3 based on best compromised solution: In this
case, the user aims for the best compromised solution among
the three different objectives: Cost, CO2 emissions and user
discomfort. In Scenario 1, the algorithm schedules the ap-
pliances to start at 11 AM for the washing machine, 3 PM
for the dishwasher and 2 PM for the electric hob, closer to
the preferred start times. During early morning, most of the
power is taken from the grid. In the late morning, midday and
early afternoon, the power generated by the RES is sufficient
to cover the base load and scheduled appliances, charge the
battery and sell back to the grid. During the evenings, most of
the remaining energy in the battery is used to meet the base
load demand.

D. MOIA Results analysis

In Table III we find the results for all simulation scenarios.
As expected, the scenarios with RES power generation present
the lowest values in cost and CO2 emissions. By having power
coming from the solar panels, the user can save money because
it covers the need to purchase electricity from the grid. They
also generate power that can be sold back to the grid, reducing
costs on the electricity bill while producing carbon-neutral
electricity. In Figs. 2 and 3, we can see the load for Scenarios
1 and 3 respectively, contrasting the amount of power that is
taken from the grid.



TABLE III
MOIA RESULTS COMPARISON

Scenario 1) RES - Scheduling
Parameter Case 1 Case 2 Case 3
Cost (£) 1.34 1.40 1.40

CO2 emissions (grams) 793.55 676.46 718.72
Discomfort 269 269 137

Washing Machine (Tstart) 11 11 11
Dishwasher (Tstart) 13 13 15
Electric Hob (Tstart) 12 12 14

Scenario 2) RES - No Scheduling
Parameter Case 1 Case 2 Case 3
Cost (£) 1.49 1.59 1.55

CO2 emissions (grams) 1034.64 851.64 861.58
Discomfort 0 0 0

Washing Machine (Tstart) 12 12 12
Dishwasher (Tstart) 21 21 21
Electric Hob (Tstart) 17 17 17

Scenario 3) No RES - Scheduling
Parameter Case 1 Case 2 Case 3
Cost (£) 6.16 6.54 6.34

CO2 emissions (grams) 2862.11 2748.43 2814.63
Discomfort 1013 242 83

Washing Machine (Tstart) 13 13 10
Dishwasher (Tstart) 5 13 17
Electric Hob (Tstart) 8 13 14

Scenario 4) No RES - No Scheduling
Parameter Case 1 Case 2 Case 3
Cost (£) 6.26 6.68 6.54

CO2 emissions (grams) 2878.64 2778.5 2782.31
Discomfort 0 0 0

Washing Machine (Tstart) 12 12 12
Dishwasher (Tstart) 21 21 21
Electric Hob (Tstart) 17 17 17

When comparing RES enabled scenarios (1 and 2), we can
see that by scheduling appliances, we achieve lower costs in
Cases 1 and 2 by 10.06% and 11.94% respectively. We also
reduce the CO2 emissions by 23.30% in Case 1 and by 20.56%
in Case 2. When comparing Case 3, we get very similar costs
on average, with a 9.67% reduction in cost and 16.58% in
CO2 emissions.

When comparing scheduling enabled scenarios (1 and 3),
Scenario 1 presents a reduction of costs of 78.24% in Case 1,
78.59% in Case 2 and 77.9% in Case 3. We can also note a
difference in CO2 emissions of 72.27% in Case 1, 75.38%
in Case 2 and 74.46% in Case 3. On the other hand, the
discomfort values for Cases 2 and 3 are lower in Scenario
3 than in Scenario 1. In Fig. 4 we can see that this is achieved
by storing energy in the battery during the morning, when the
CEI is low, and scheduling the appliances at the lowest CEI
time in the afternoon and evening, which are closer to the
preferred starting times.

When comparing scenarios with no-scheduling (2 and 4), as
expected, Scenario 2 presents a significant increase in money
savings due to the use of RES power. In Case 1, we see savings
of 76.19%, in Case 2 we get 76.19% and in Case 3 we get
76.29%. For CO2 emissions, we achieve savings of 64.05%
for Case 1, 69.34% for Case 2 and 69.03% for Case 3.

Finally, when comparing the scenarios with no-RES (3 and
4), we achieve lower values by scheduling, but the difference
is not significant. We have money savings of 1.59% in Case

1, 2.09% in Case 2 and 3.05% in Case 3. When looking at
CO2 emissions savings, we have a reduction of 0.57% in Case
1, 4.5% in Case 2 and an increase of 1.14% in Case 3. With
the considerable increase in discomfort when scheduling and
the minimal decrease in costs and CO2 emissions, the results
of these experiments show that it might not be viable to the
user to schedule their appliances in the no-RES scenarios.

Fig. 2. Energy consumption for Case 3 in Scenario 1.

Fig. 3. Energy consumption for Case 3 in Scenario 3.

E. Algorithms comparison

We performed the same cases and scenarios for both MOIA
and MOGA, with the same parameters as shown in Table II.
In Fig. 5, we compare the results of Case 3 which is the Best
Compromised Solution. We can see that the MOIA achieved
lower results for cost in Scenarios 1, 2 and 3 and MOGA
achieved lower results in Scenario 4. We can also see that
MOIA achieved lower results for CO2 emissions in Scenarios
1, 2 and 4, while MOGA achieved better results in Scenario 3.
It is important to note that this being a compromised solution,
it might not always benefit both aspects the most. In Scenario
3, we see MOIA achieving lower cost but higher emissions
while in Scenario 4, we see the opposite.



Fig. 4. Battery storage levels of Case 3 in Scenarios 1 and 3.

Fig. 5. Cost and CO2 emissions comparison between MOGA and MOIA for
Case 3.

V. CONCLUSION

This paper proposed a multi-objective optimisation model
for scheduling appliances in homes with a battery energy
storage system. Different scenarios were considered, such
as RES enabled homes and scheduling preferences, while
studying different cases, focusing on the priority goals for the
user and considering user discomfort. An MOP was considered
after modelling the system, which is then solved by the MOIA
and the MOGA. These algorithms give a Pareto Frontier as
a result, from which we obtained the best results for each
case and scenario. The MOIA achieved better results than the
MOGA in most scenarios and cases. The results show that
the user can save the most money and reduce the most CO2
emissions when scheduling appliances under a RES scenario,
where we found a 10.06% reduction in cost and 20.56%
reduction in CO2 emissions when compared to a RES scenario
without scheduling.

For future research, more appliances and different settings
for the appliances will be considered.
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