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ABSTRACT

Trajectory prediction of road users in real-world scenarios
is challenging because their movement patterns are stochas-
tic and complex. Previous pedestrian-oriented works have
been successful in modelling the complex interactions among
pedestrians, but fail in predicting trajectories when other
types of road users are involved (e.g., cars, cyclists, etc.),
because they ignore user types. Although a few recent works
construct densely connected graphs with user label informa-
tion, they suffer from superfluous spatial interactions and
temporal dependencies. To address these issues, we propose
Multiclass-SGCN, a sparse graph convolution network based
approach for multi-class trajectory prediction that takes into
consideration velocity and agent label information and uses
a novel interaction mask to adaptively decide the spatial and
temporal connections of agents based on their interaction
scores. The proposed approach significantly outperformed
state-of-the-art approaches on the Stanford Drone Dataset,
providing more realistic and plausible trajectory predictions.

Index Terms— trajectory prediction, multi-class agents,
graph convolution networks, self-attention

1. INTRODUCTION

Trajectory prediction has drawn considerable attention with
the development of autonomous vehicles in recent years.
Specifically, models take the observed trajectories of different
agents in real-world scenes to predict their future movement
patterns, benefiting self-driving cars for collision avoidance
[1], as well as anomalous movement flow detection [2]. To
tackle the challenge of modelling the complex and stochastic
nature of social interaction patterns, methods focusing on
spatial interaction modelling and temporal dependency cap-
turing are proposed. Social-LSTM [3] uses pooling windows
for interaction modelling and recurrent architecture for tem-
poral capturing, whereas Social-STGCNN [4] uses relative
distance to measure interactions between agents and temporal
convolution networks (TCN) [5] to handle temporal depen-
dencies. STAR [6] and TF [7] propose transformer-based [8]
architectures for both spatial and temporal aspects, achieving
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impressive performance. As densely connected graphs may
generate superfluous interactions, leading to impractical com-
putational costs, Sparse Graph Convolution Network (SGCN)
[9] proposes a self-attention based sparse graph architecture
to mitigate these problems.

The main challenge of trajectory prediction is to consider
the different movement behaviours of different classes of
agents. The aforementioned research only focuses on pedes-
trians and does not consider other classes of agents, such
as cars and cyclists, which have a significant effect on tra-
jectory prediction. Intuitively speaking, even if two agents
have a similar velocity, human instincts would force us to
pay more attention to the movements of the larger agents,
such as considering car over bicycle. To address this is-
sue, Semantics-STGCNN [10, 11] considered class labels for
multi-class trajectory prediction by embedding agent-label
features into the velocity representations [12], ensuring that
the upcoming GCN [13] aggregates both features. Neverthe-
less, Semantics-STGCNN still suffers from the superfluous
interactions problem as it uses a densely connected graph.
It also lacks a separate modelling of temporal dependencies,
thus suffering for long-term predictions.

In this paper, we propose Multiclass Sparse Graph Convo-
lution Network (Multiclass-SGCN), an attention-based sparse
GCN for multi-class trajectory prediction that models interac-
tions and temporal dependencies among multi-class agents in
real scenes. We introduce a novel method to embed the cor-
related agent label and velocity features to build the velocity-
label graph (VLG) representation, with particular care to learn
the optimal embedding for each feature separately. In the
sparse graph learning module, we designed a novel adaptive
interaction mask to spatially and temporally evaluate atten-
tion patterns and generate plausible sparse adjacency matri-
ces, enabling each agent to focus only on explicit neighbours
and important time steps. Finally, GCN [13] and TCN [5]
layers are employed for the final trajectory prediction.

Performance was evaluated on the Stanford Drone Dataset
(SDD) [14] against state-of-the-art approaches, showing that
our proposed model outperforms all existing methods for all
the examined evaluation metrics by a significant margin. We
open our source code for research and validation: https://
github.com/Carrotsniper/Multiclass-SGCN.

The contributions of this work are: (1) We present
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Fig. 1: The network structure of Multiclass-SGCN. Given a sequence of T frames including N agents, we extract the velocity
and label features to build spatial and temporal velocity-label graph (SVLG and TVLG). The embedded VLG features are
passed into enhanced sparse graph learning with the proposed adaptive interaction mask to construct meaningful sparse attention
adjacency matrices. Graph convolution networks (GCN) and TCN are employed to aggregate and make predictions.

Multiclass-SGCN, a GCN for predicting multi-class agent
trajectories, which outperforms state-of-the-art methods. (2)
To effectively model the different patterns of multi-class
agent trajectories, we propose a novel algorithm to separately
embed the correlated features of class label and velocity, re-
sulting in an optimal embedding for different natures of input
features. (3) To create sparse attention of neighbours from
different classes, we propose an adaptive interaction mask
that adaptively filters neighbours of lower influence.

2. MULTICLASS-SGCN

Given a series of T video frames with N agents, the corre-
sponding 2-D trajectory coordinates (xi

t, y
i
t), velocity Vi

t =
(xi

t − xi
t−1, y

i
t − yit−1), and one-hot encoded semantic labels

Li
t, ∀ t ∈ [1, T ] and ∀ i ∈ [1, N ], the goal of multi-class

trajectory prediction is to predict the future trajectory coordi-
nates of each agent (xi

t, y
i
t) ∀ t ∈ [T + 1, T ′]. An overview

of the proposed Multiclass-SGCN for trajectory prediction is
provided in Figure 1. We employ SGCN [9] as our backbone
as it introduces a self-attention mechanism to enhance the
spatial and temporal sparsity of the neighbour graph. The two
key components of our network are the velocity label graph
embedding that separately embeds the velocity and class la-
bels for an optimal representation, and the enhanced sparse
graph learning that adaptively determines the neighbour graph
for each agent based on its attention preferences.

2.1. Velocity-Label Graph (VLG) Embedding

We observe that the two important factors that affect the
movement of an agent are the classes and velocity of neigh-
bours. Class labels, Li

t, can indicate how different classes
of agents, such as pedestrian, car, cyclist, have different in-
fluences [10]. Velocity, Vi

t , enhances the ability of a model
to capture the geometric features of agents [4]. As velocity
and classes are highly correlated, such as a car would have
a higher speed, it would be advantageous to model them to-
gether. At the same time, as they are two different features, it

would be better to embed them separately.
To encode the spatial and temporal features, we construct

a spatial VLG (SVLG) and a temporal VLG (TVLG). SVLG
contains the features of all the agents at time step t, with
Gsvlg = (Xt, At), Xt = {xi

t | i = 1, ..., N}, while TVLG
contains the features of each individual agent over all time
steps, such that Gtvlg = (Xi, Ai), Xi = {xi

t | t = 1, ..., T}.
X is the concatenation of Vi

t and Li
t, and At and Ai are ad-

jacency matrices that represent the edges of the SVLG and
TVLG respectively, indicating whether the nodes are con-
nected (denoted as 1) or not (denoted as 0). Following [9], Ai

is initialised as 1 and At as an upper triangular matrix filled
with 1.

We propose a velocity-label graph (VLG) embedding that
combines the advantages of velocity and class label, while
learning an optimal embedding for each of them. The graph
embedding of VLG is computed by combining the embed-
dings of velocities and one-hot encoded class labels of agents:

Evlg = EV
vlg + EL

vlg

EV
vlg = ϕ(GV

vlg,WEV
vlg

)

EL
vlg = ϕ(GL

vlg,WEL
vlg

)

(1)

where GV
vlg and GL

vlg are subgraphs of VLG corresponding
to the velocity and label features respectively, ϕ(·, ·) a linear
transformation, WEV

vlg
∈ R2×DEvlg and WEL

vlg
∈ RL×DEvlg

the weights of the linear transformation, L the length of en-
coded one-hot labels, and DEvlg

the embedding size.

2.2. Enhanced Sparse Graph Learning

We enhance the sparse graph learning module of SGCN [9]
to better model the multi-class nature of the problem. This
module is constructed from the numerical interaction scores
calculated by the self-attention module. It then extracts high-
level spatial-temporal interaction features and uses an interac-
tion mask with a fixed threshold of 0.5 to optimise the sparsity
of graph representations by removing inexplicit connections.



We argue that the interaction mask threshold should be adap-
tively adjusted through the learning process of each individual
agent.

Given the embedded SVLG and TVLG, Esvlg and Etvlg,
a self-attention module [8] is implemented to calculate the
attention scores A between each node pairs:

Qvlg = ϕ(Evlg,W
vlg
Q ), Kvlg = ϕ(Evlg,W

vlg
K )

Avlg = Softmax(
Qvlg ×KT

vlg√
dvlg

)
(2)

where ϕ(·, ·) denotes a linear transformation, W vlg
Q and W vlg

K

are learnable weight matrices,
√
dvlg is the scaled factor for

numerical stability. The output spatial and temporal atten-
tion matrices, Asvlg and Atvlg, are of size T × N × N and
N ×T ×T , respectively. Following [9], we implement a fea-
ture enhancement module using a series of asymmetric con-
volution layers [15] to extract high-level interaction features,
and using one-by-one convolutions on the spatial attention
scores to capture the temporal dependencies, thus creating the
high-level interaction attention features Fsvlg and Ftvlg.

To sparsify the high-level interaction attention matrix, we
propose an adaptive interaction mask (AIM) to extract the set
of neighbours in SVLG and TVLG. Manually-set fixed inter-
action thresholds, as used by SGCN [9], cannot fully describe
the patterns of spatial interactions and temporal dependencies
of each agent. We propose an average operator to adaptively
calculate a threshold and remove the influence of less impor-
tant neighbours, allowing the system to adapt according to the
interactions of various types of agents, thus being more suit-
able for more complex scenes compared to the global thresh-
old approach of SGCN [9]. In particular, the (i, j)-th element
of the adaptive sparse interaction mask Mvlg is computed as:

Mvlg[i, j] =

{
1, σ(Fvlg[i, j]) >

∑N
j=1 σ(Fvlg[i,j])

N

0, otherwise
(3)

where σ indicates the Sigmoid function. Using the adaptive
interaction mask, we construct a sparse adjacency matrix for
graph convolution, and because of the removal of superflu-
ous connections, the sparse graph enables the GCN model to
learn from influential neighbours, thus improving both train-
ing speed and prediction accuracy.

Similarly to [9], we apply two separate branches of the
GCN [13] to fuse the sparse spatial VLG and sparse temporal
VLG. The two GCN branches differ in the order of their input,
as the first is fed the spatial VLG before the temporal VLG,
whereas the second is fed in the reverse order. Then, the last
outputs of these two GCN branches are summed to provide
the final trajectory representation H . Finally, temporal con-
volution networks (TCN) [5] are used on the temporal dimen-
sion, assuming that the coordinates (xi

t, y
i
t) of agent i at frame

t follow the bi-variate Gaussian distribution as N(µi
t, σ

i
t, ρ

i
t),

a cascade of TCN layers can be used to predict parameters

in the bi-variate Gaussian distribution. To train the proposed
network, we minimise the negative log-likelihood loss func-
tion to estimate the trained parameters follow [4].

3. EXPERIMENTAL RESULTS

The proposed model was trained and validated on the Stan-
ford Drone Dataset (SDD) [14]. SDD has class labels for six
different types of agents, including pedestrian, cyclist, cart,
car, skater, and bus. Data is captured from bird’s-eye view
by flying a drone over Stanford University’s campus. We
existing works [9], [16] that apply 8 observed frames (3.2
seconds) to predict the next 12 frames (4.8 seconds), then
20 samples are derived from the learnt multivariate distri-
bution. The model was evaluated in terms of the Minimum
Average Displacement Error (mADE) and the Minimum Fi-
nal Displacement Error (mFDE) as in [4], as well as in terms
of the Average ADE (aADE) and the Average FDE (aFDE)
proposed by [10] who argued that aADE and aFDE evaluate
the models more holistically. The Adam [17] optimiser was
used for training, with a 0.0001 learning rate and a batch size
of 256. To compare with Semantics-STGCNN [10], we also
normalised and denormalised the input trajectory data with a
scaling factor of 10. Training typically converged in around
35-45 epochs.

3.1. Quantitative Results

The proposed method was compared to 8 models in to-
tal, including the baseline Linear model, energy function
based behavioral model (SF [18] ), Social-LSTM [3], Social-
GAN [16], CAR-Net [19], DESIRE [20], Social-STGCNN
[4] and Semantics-STGCNN [10], the existing state-of-the-
art model for multi-class trajectory prediction. Notably,
the results of Semantics-STGCNN were evaluated using the
published source code, whereas other results were provided
by [10]. Results are presented in Table 1 in terms of mADE
and mFDE. It is evident that the proposed model outper-
formed all other models, including the latest Semantics-
STGCNN [10] with a 3.76 decrease in mADE and 3.71
decrease in mFDE, indicating the importance of considering
label information and velocity in complex trajectory predic-
tion tasks, as well as of using an adaptive interaction mask.
Furthermore, as discussed in [10], common minimum-based
metrics (mADE and mFDE) focus only on the best sampled
sample, which is not comprehensive in real-world scenar-
ios, while average-based metrics (aADE and aFDE) can be
more plausible and high level. To this end, we compared
the proposed Multiclass-SGCN with Semantic-STGCNN us-
ing aADE and aADE (Table 2), demonstrating a significant
improvement of more than minus 10 for both metrics.

To further validate the contribution of class labels (CL),
separate embedding (SE) of the VLG, and adaptive inter-
action mask (AIM), we conducted three ablation experi-



Table 1: Performance comparison with the state-of-the-arts.

Model mADE mFDE

Linear 37.11 63.51
SF [18] 36.48 58.14
Social-LSTM [3] 31.19 56.97
Social-GAN [16] 27.25 41.44
CAR-Net [19] 25.72 51.80
DESIRE [20] 19.25 34.05
Social-STGCNN [4] 26.46 42.71
Semantics-STGCNN [10] 18.12 29.70

Multiclass-SGCN (ours) 14.36 25.99

Table 2: Performance comparison with Semantics-STGCNN.

Model mADE mFDE aADE aFDE

Semantics-STGCNN [10] 18.12 29.70 33.14 61.14
Multiclass-SGCN (ours) 14.36 25.99 22.87 45.30

ments by evaluating two variants of the proposed method: i)
Mutliclass-SGCN w/o SE denotes that the embedding of the
input graph was computed from the whole feature matrix,
instead of separately for velocity and labels (Section 2.1); ii)
Mutliclass-SGCN w/o AIM denotes that a manually set inter-
action threshold (ξ = 0.5) was used for all agents to measure
the existence of their neighbours, as in SGCN [9], instead
of our proposed adaptive interaction mask (Section 2.2); iii)
Mutliclass-SGCN w/o CL denotes that the embedding of the
input graph was computed only for velocity, instead of both
velocity and class labels. Results in Table 3 show that the
proposed use of class labels and of the SE and AIM mod-
ules is important for boosting the performance of the model,
especially AIM, which led to a 43.3% reduction in aADE
and a 41.2% reduction in aFDE, indicating the importance of
adaptively modelling the interaction patterns of each agent,
because agents of different classes may have different atten-
tion preferences.

3.2. Qualitative Results

Predicted trajectories by the proposed Multiclass-SGCN and
Semantics-STGCNN [10] for one frame from three scenar-
ios are shown in Figure 2, demonstrating that our proposed
model can make more realistic and consistent trajectory pre-
dictions. Specifically, in the complex circular scenario (left-
most images in Figure 2), which contains too many agents,
both methods failed to converge to the ground-truth, espe-
cially when agents are turning or moving at high speeds, but
the prediction results of our Multiclass-SGCN exhibit less di-
vergence and are better aligned with the ground-truth trajecto-
ries. Moreover, for some static agents, Semantics-STGCNN
generates abnormal predictions, while our model does not. As
for the middle images in Figure 2, it is clear that Semantics-
STGCNN totally diverges from the ground-truth, whereas our
results match the ground-truth considerably. Furthermore, for
the right-most images in Figure 2, both methods are close to
the ground-truth, but Multiclass-SGCN presents more stable
trajectories with lower amplitude oscillations.

Table 3: Ablation study results.

Model mADE mFDE aADE aFDE

Multiclass-SGCN w/o SE 14.77 25.44 24.74 48.42
Multiclass-SGCN w/o CL 15.32 26.39 26.29 50.30
Multiclass-SGCN w/o AIM 22.05 29.53 40.33 76.99
Multiclass-SGCN (ours) 14.36 25.99 22.87 45.30

(a) Semantics-STGCNN [10]

(b) Muticlass-SGCN (ours)

Fig. 2: [10] vs. ours for single frames. Blue filled circles
are observed trajectories, red hollow circles are ground-truth,
purple lines in (a) are predicted results by [10], green lines in
(b) are predicted results by the proposed Multiclass-SGCN.

To summarise, Semantics-STGCNN underperforms be-
cause the densely connected graph inherently introduces
superfluous interactions that disrupt normal trajectories, and
the lack of separate modelling of temporal dependencies re-
sults in unstable movements, even when no social interactions
occur. In contrast, Multiclss-SGCN overcomes these issues
by modelling both spatial interactions and temporal depen-
dencies with velocity-label graph embedding and enhanced
sparse graph learning modules, leading to better predictions.

4. CONCLUSION

In this paper, we introduced Multiclass-SGCN for multi-class
trajectory predictions. To this end, we proposed the velocity-
label graph that fuses velocity and label information in or-
der to take into consideration different types of agents. We
also designed a novel adaptive interaction mask to filter the
high-level neighbours of each agent to maintain sparsity and
enhance reliability. The experimental evaluation on the Stan-
ford Drone Dataset demonstrated that our proposed method
outperforms state-of-the-art approaches for all metrics con-
sidered. In the future, we intend to examine the integration of
environmental features [21] into our Multiclass-SGCN model
to further improve prediction accuracy.



5. REFERENCES

[1] J. Liu, X. Mao, Y. Fang, D. Zhu, and M. Meng, “A
survey on deep-learning approaches for vehicle trajec-
tory prediction in autonomous driving,” CoRR, vol.
abs/2110.10436, 2021.

[2] B. Zhou, X. Tang, and X. Wang, “Learning collective
crowd behaviors with dynamic pedestrian-agents,” In-
ternational Journal of Computer Vision, vol. 111, no. 1,
pp. 50–68, 2015.

[3] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-
Fei, and S. Savarese, “Social LSTM: Human trajectory
prediction in crowded spaces,” in IEEE CVPR, 2016,
pp. 961–971.

[4] M. Abduallah, Q. Kun, E. Mohamed, and C. Chris-
tian, “Social-stgcnn: A social spatio-temporal graph
convolutional neural network for human trajectory pre-
diction,” in IEEE/CVF CVPR, 2020, pp. 14412–14420.

[5] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evalua-
tion of generic convolutional and recurrent networks for
sequence modeling,” CoRR, vol. abs/1803.01271, 2018.

[6] C. Yu, X. Ma, J. Ren, H. Zhao, and S. Yi, “Spatio-
temporal graph transformer networks for pedestrian tra-
jectory prediction,” in ECCV, August 2020.

[7] I. Giuliari, F.and Hasan, M. Cristani, and F. Galasso,
“Transformer networks for trajectory forecasting,” in
ICPR, 2021, pp. 10335–10342.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A.N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in NIPS, 2017.

[9] L. Shi, L. Wang, C. Long, S. Zhou, M. Zhou, Z. Niu, and
G. Hua, “SGCN: Sparse graph convolution network for
pedestrian trajectory prediction,” in IEEE/CVF CVPR,
2021, pp. 8990–8999.

[10] B. A. Rainbow, Q. Men, and H. P. H. Shum, “Semantics-
STGCNN: A semantics-guided spatial-temporal graph
convolutional network for multi-class trajectory predic-
tion,” in IEEE SMC, 2021, pp. 2959–2966.

[11] Qianhui Men and Hubert P. H. Shum, “Pytorch-based
implementation of label-aware graph representation for
multi-class trajectory prediction,” Software Impacts,
vol. 11, pp. 100201, 2021.

[12] P. Zhang, C. Lan, W. Zeng, J. Xing, J. Xue, and
N. Zheng, “Semantics-guided neural networks for ef-
ficient skeleton-based human action recognition,” in
IEEE/CVF CVPR, 2020, pp. 1109–1118.

[13] T. N. Kipf and M. Welling, “Semi-supervised classi-
fication with graph convolutional networks,” in ICLR,
2017.

[14] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese,
“Learning social etiquette: Human trajectory under-
standing in crowded scenes,” in ECCV, 2016, pp. 549–
565.

[15] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna, “Rethinking the inception architecture for
computer vision,” in IEEE CVPR, 2016, pp. 2818–2826.

[16] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and
A. Alahi, “Social gan: Socially acceptable trajectories
with generative adversarial networks,” in IEEE/CVF
CVPR, 2018, pp. 2255–2264.

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR, 2015.

[18] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg,
“Who are you with and where are you going?,” in
CVPR, 2011, pp. 1345–1352.

[19] A. Sadeghian, F. Legros, M. Voisin, R. Vesel, A. Alahi,
and S. Savarese, “Car-net: Clairvoyant attentive recur-
rent network,” in ECCV, 2018, pp. 162–180.

[20] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. S. Torr,
and M. Chandraker, “DESIRE: Distant future predic-
tion in dynamic scenes with interacting agents,” in IEEE
CVPR, 2017, pp. 2165–2174.

[21] K. Mangalam, Y. An, H. Girase, and J. Malik, “From
goals, waypoints & paths to long term human trajectory
forecasting,” in IEEE/CVF ICCV, October 2021, pp.
15233–15242.


	 Introduction
	 Multiclass-SGCN
	 Velocity-Label Graph (VLG) Embedding
	 Enhanced Sparse Graph Learning

	 Experimental Results
	 Quantitative Results
	 Qualitative Results

	 Conclusion
	 References

