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Abstract—Lung ultrasound is a widely used portable, cheap,
and non-invasive medical imaging technology that can be used
to identify various lung pathologies. In this work, we propose
a multi-modal approach for lung ultrasound image classification
that combines image-based features with information about the
type of ultrasound probe used to acquire the input image.
Experiments on a large lung ultrasound image dataset that
contains images acquired with a linear or a convex ultrasound
probe demonstrated the superiority of the proposed approach for
the task of classifying lung ultrasound images as “COVID-19”,
“Normal”, “Pneumonia”, or “Other”, when compared to sim-
ply using image-based features. Classification accuracy reached
99.98% using the proposed combination of the Xception pre-
trained CNN model with the ultrasound probe information, as
opposed to 96.81% when only the pre-trained EfficientNetB4
CNN model was used. Furthermore, the experimental results
demonstrated a consistent improvement in classification perfor-
mance when combining the examined base CNN models with
probe information, indicating the efficiency of the proposed
approach.

Index Terms—Ilung ultrasound images, COVID-19, image clas-
sification, multi-modal, CNN

I. INTRODUCTION

Lung ultrasound is a well known medical imaging technique
for the detection of pneumonia and related lung sicknesses [1].
As an alternative to CT and X-ray, lung ultrasound (LUS)
is a portable, cheap, non-invasive, and easy-to-use medical
imaging technology that can be used to identify lung illnesses
[2]. In addition, LUS imaging is an effective technique for
early diagnosis and follow-up of COVID-19 patients, accord-
ing to recent medical literature [3]-[5]. Fiala et al. [4] provide
a succinct summary of LUS results in COVID-19 patients.
Some of these abnormalities, such as numerous fused bilateral
B lines, subpleural pulmonary consolidations, uneven pleural
lines, and poor blood flow, are consistent with the results of
CT scans. A significant difference between subpleural lesions
in COVID-19 patients and other pulmonary disorders, such as
bacterial pneumonia, tuberculosis, and cardiogenic pulmonary
oedema, is one of the key findings Fiala et al. [4] highlighted.

The use of biomedical imaging methods (e.g. US, X-ray,
CT) has recently shown potential in the detection of COVID-
19, allowing in most cases for faster diagnosis than with the
widely used RT-PCR approach [6], [7]. Furthermore, deep
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learning methods and more specifically convolutional neural
networks (CNNs), have demonstrated high efficiency in many
computer vision-oriented tasks, including the classification
and segmentation of images, as well as object detection [8].
Consequently, research on Al/machine learning systems has
extensively focused on automating image analysis in the
clinical field [9], and deep learning-based automated detection
of COVID-19 using LUS imaging has been shown to achieve
high performance [10]-[12].

Diaz-Escobar et al. [13] classified the POCUS LUS
dataset [10] using binary (COVID-19 vs. pneumonia and
COVID-19 vs. healthy) and three-class (COVID-19, pneu-
monia, and healthy) pre-trained deep learning (DL) models,
such as VGG19 [14], InceptionV3 [15], Xception [16], and
ResNet50 [17]. Their findings demonstrated that InceptionV3
achieved the highest AUC of 0.97 for distinguishing COVID-
19 cases from healthy controls and patients with pneumo-
nia. A lightweight DL design for COVID-19 LUS diagnosis
was proposed by Awasthi et al. [18]. The newly developed
technique, known as Mini-CovidNet, alters MobileNet with
focus loss, achieving an accuracy of 0.83 on the POCUS
dataset. Che et al. [19] evaluated a dataset made up of both
the POCUS [10] and ICLUS-DB [20] datasets, using a multi-
scale residual CNN with a feature fusion approach, achieving
an average accuracy of 0.95. Horry et al. [6] conducted an
experiment on US images of COVID-19, normal and bacterial
pneumonia, by applying transfer learning for the classification
approach using eight CNN-based models, achieving a recall
and precision of 1.0. Similarly, Roberts et al. [21] carried
out a study on classifying COVID-19, bacterial pneumonia,
and normal cases on the POCUS dataset [10] by applying
DL techniques using the VGG16 [14] and ResNetl8 [17]
architectures, achieving an accuracy of 0.86 and an AUC of
0.90. Sadik et al. [22] also experimented on the POCUS dataset
using four DL models (DenseNet201 [23], ResNet152V2 [17],
Xception [16], and VGGI19 [14]), achieving an accuracy of
0.91 and an Fl-score of 0.90. Zheng et al. [24] proposed a
multi-modal approach that combines imaging and text data
using a neural network that can classify COVID-19 vs. non-
COVID-19 cases, achieving an accuracy of 0.98 and a F1-score
of 0.99. It must be noted that in many research works that



(a) Normal (linear) (b) COVID-19 (linear)

(c) Pneumonia (linear) (d) Other (linear)
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Fig. 1: Example US images from the COVIDx-US dataset for each class and probe type. (a-d) linear probe, (e-h) convex probe.

focused on COVID-19 detection using DL approaches, multi-
modal approaches have proven to be more effective, achieving
better classification performance than methods relying on a
single modality [6], [24], [25].

Despite numerous research works on automated LUS image
classification, the performance achieved is not yet on par
with the level required for real-world clinical practice. To
this end, in this work, we employed a large lung ultrasound
image dataset (COVIDx-US [26]) that contains 22,776 LUS
images, obtained using a linear or convex US probe, and
characterised as referring to COVID-19, pneumonia, other
pathologies, or normal images. We propose a multi-modal
approach for LUS image classification that fuses image-based
features, extracted using common CNN models pre-trained
on ImageNet [27], with information about the probe used
to obtain the input LUS image. The proposed approach was
evaluated on the examined dataset against commonly used pre-
trained CNN models, demonstrating a consistent improvement
in performance against all the examined models.

The contribution of this work can be summarised as fol-
lows: (i) We evaluate the performance of several well-proven
CNN architectures that have been shown to perform well on
general image classification tasks, and examine them on the
task of classifying LUS images as belonging to COVID-19,
normal, pneumonia, and others. (ii) We propose a multi-modal
approach where image-based features extracted by the CNN
models are combined with information about the type of probe
used in order to acquire the ultrasound image, in order to
enhance the final classification performance. (iii) We provide
a detailed performance evaluation of the proposed multi-modal
architecture on the examined LUS image dataset.

II. METHODOLOGY

In this work, we attempt to improve the performance of
common pre-trained CNN models on the task of classifying
lung ultrasound images as COVID-19, pneumonia, other lung

diseases/conditions, or normal. To this end, we propose and
evaluate a multi-modal approach where image-based features
extracted by the CNN models are combined with information
about the type of probe used in order to acquire the ultrasound
image, in order to enhance the final classification performance.
The proposed models were trained and evaluated on a dataset
containing 22,776 lung ultrasound images.

A. Dataset

The COVIDx-US [26] (version 1.5) collection is heteroge-
neous in nature and includes lung ultrasonic imaging data from
numerous sources with different properties, such as different
US probe types (convex or linear), symptoms exhibited by the
patients, demographic information, and others. It contains 220
lung ultrasound videos created using linear or convex probes,
from which 22,776 processed ultrasound images are extracted.
The ultrasound videos in the dataset were acquired from nine
different sources: 1) ButterflyNetwork, 2) GrepMed, 3) LITFL,
4) The PocusAtlas, 5) Radiopaedia, 6) CoreUltrasound, 7)
University of Florida (UF), 8) Scientific Publications, and 9)
Clarius. In the current COVIDx-US version, US images are
divided into four categories: “COVID-19”, “normal”, “pneu-
monia”, and “other”. The dataset contains 9,227 US images
categorised as “COVID-19”, 2,245 categorised as “normal”,
4,300 as “pneumonia”, and 7,004 as “other”. In the absence of
an official training/test split, we opted to split the dataset into
90% training and 10% test, using random stratified sampling
in order to preserve the classes distribution. The images in
the training set were further divided into 80% for training
and 20% for validation in order to facilitate the training of
the machine learning models. Apart from the class that it
belongs to, each image was also annotated with the type of
US probe (linear or convex) used for its acquisition. Linear
probes have a flat array and look, producing pictures with a
better resolution but less tissue penetration, whereas convex
probes (or curved linear probes) have a curved array with a
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Fig. 2: Outline of the proposed architecture.

wider field of view at a lower frequency, offering wider depth
and deeper penetration [28]. Examples of LUS images from
the COVIDx-US dataset for each class and probe type are
shown in Fig. 1.

B. Proposed architecture

Preliminary experimentation on the examined dataset using
various established CNN models, pre-trained on ImageNet and
fine-tuned on the training set of the dataset, demonstrated
that such an approach can achieve impressive performance,
with accuracies and F1-scores up to 96.5%. Nevertheless, as
explained in the description of the dataset, the COVIDx-US
dataset contains LUS images acquired using a linear or a
convex probe. LUS images acquired with different types of
probes exhibit some different characteristics, as can be seen in
Fig. 1. As a result, and despite the high performance achieved
during our preliminary experimentation, we hypothesise that
the presence in the dataset of US images obtained using
various types of probes (linear, convex) may hinder the ability
of the machine learning model to precisely classify a US
image. Dividing the dataset into LUS images acquired using a
linear probe and images acquired using a convex probe could
be a potential solution to this issue. However, this would lead
to: (a) a reduction in the number of training samples, (b) the
requirement for creating and training two separate machine
learning models, one for images acquired using a linear
probe, and one for images acquired using a convex probe,
resulting in reduced practicality and increased computational
cost, and (c) potential reduction in the generalisation ability
of the trained models, since the high accuracy and F1-score
achieved during the preliminary experimentation demonstrated
that despite their differences, images acquired with these two
types of probes exhibit similar features that can be successfully
extracted using a single machine learning model.

To address this issue and avoid dividing the dataset accord-
ing to probe type, thus having to train two separate models,
we propose a multi-modal approach where features extracted
using a CNN model, pre-trained on ImageNet, are fused with
information about the type of probe used to acquire the input
image. An outline of the proposed approach is provided in
Fig. 2. The proposed deep learning approach consists of a neu-
ral network with two branches. The first branch takes a LUS
image as an input and passes it through the convolutional base
of a pre-trained CNN, i.e. the convolutional layers without the

final fully connected layers used for classification. The output
of the convolutional layers is then flattened before being fused
with the output of the second branch of the neural network.
In this work, we examined the performance of the following
nine established CNN models for the first branch of the pro-
posed model: MobileNetV2 [29], InceptionV3 [15], Inception-
ResNetV2 [30], Xception [16], ResNet50V2 [17], Efficient-
NetB4 [31], DenseNet121, DenseNet169, DenseNet201 [23].

The second branch of the proposed neural network takes
as an input the type of probe used (linear or convex) and
maps it to a 1-dimensional embedding of size 512. To compute
the probe embedding, the input is first passed through a fully
connected (dense) layer of size 1024, followed by another fully
connected layer of size 1024, and finally a fully connected
layer of size 512. A ReLU activation function is used for all
the fully connected layers. To reduce overfitting and improve
the generalisation ability of the model, a dropout layer [32]
with a dropout rate of 0.4 is added after each of the first
two fully connected layers, as shown in Fig. 2. The output
of both branches is then concatenated and passed through a
fully connected layer of size 4 (equal to the number of classes
in the dataset) that uses a softmax activation function for the
final classification of the input image.

C. Training and classification

To evaluate the efficiency of the proposed multi-modal
approach, we compared its performance (see Section III) to
the performance of the base CNNs used, fine-tuned on the
examined dataset. All base CNN models used were pre-trained
on ImageNet and the Keras library was used for both the
pre-trained models, as well as for implementing the proposed
architecture. Both the proposed and the baseline models were
trained using the Adam optimiser, a learning rate of 0.0001,
a batch size of 16, and sparse categorical cross-entropy as the
loss function. In addition, the training process stopped after 20
epochs with no improvement in validation accuracy, and the
learning rate was multiplied by a factor of 0.2 after 2 epochs
with no improvement, with a lower bound on the learning rate
of 1076.

III. RESULTS & DISCUSSION

The proposed approach using the nine base CNN models, as
well as the nine base CNN models individually, were trained
and evaluated on the COVIDx-US dataset for the task of classi-
fying LUS images into “COVID-19”, “Normal”, “Pneumonia”,



TABLE I: Classification performance (%) of the baseline and the proposed methods for various base CNN models. Results in
bold indicate the best performance for each metric and approach. Underlined results indicate the overall best performance.

Base CNN Base CNN Base CNN + Probe info (proposed)

Params. Accuracy Precision Recall F1 Params. Accuracy Precision Recall F1
MobileNetV2 2,508,868 96.73 96.51 96.46  96.49 4,087,364 99.32 99.14 99.42  99.27
InceptionV3 22,007,588 96.49 96.45 96.67  96.55 | 23,586,084 99.34 99.18 99.39  99.28
InceptionResNetV2 | 54,490,340 96.44 96.28 95.80  96.03 | 56,068,836 99.39 99.23 99.46  99.36
Xception 21,262,892 94.38 95.03 95.24  95.11 | 22,841,388 99.98 99.99 99.94 9997
ResNet50V2 23,966,212 96.57 96.32 96.35 96.33 | 25,544,708 99.71 99.70 99.70  99.70
EfficientNetB4 18,025,052 96.81 96.47 96.70  96.58 | 19,603,548 99.41 99.24 99.22  99.37
DenseNet121 7,238,212 96.53 96.30 96.18  96.24 8,816,708 99.34 99.18 99.39  99.28
DenseNet169 12,969,028 96.75 96.48 96.58  96.53 | 14,547,524 99.36 99.17 99.49  99.30
DenseNet201 18,698,308 96.49 96.35 96.10  96.22 | 20,276,804 99.36 99.14 99.41 99.30
Mean 96.35 96.24 96.23 96.23 99.47 99.33 99.49 9943
St. Dev. 0.75 0.46 0.47 0.46 0.23 0.30 0.21 0.24

Xception + Probe info (proposed) over the baseline CNN approach. The overall best performing

Predicted model was the proposed “Xception + Probe information” that
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Fig. 3: Confusion matrices for the best performing proposed
model (Xception + Probe information) and the best performing
base CNN model (EfficientNetB4).

and “Other” (4-class problem). Classification performance was
measured using the following metrics: classification accuracy,
precision, recall (sensitivity), and F1-score. Furthermore, since
precision, recall, and Fl-score depend on the class that is
considered as positive, they were computed for all classes
separately and the average across the four classes was reported
as the final metric value. It must be noted that all experiments
were carried out using the TensorFlow library, the Keras API,
and the Python programming language on a Tesla K40c and a
GeForce GTX Titan GPU. Additionally, all LUS images were
resized to 224 x 224 pixels before being fed as input to the
examined models.

A. Experimental results

The classification performance achieved using the baseline
and the proposed approaches is reported in TABLE I, in
terms of the classification accuracy, precision, recall, and F1-
score metrics. From this table, it is evident that the fusion
of the probe information and the image-based CNN features
consistently led to an improvement in all classification metrics

The confusion matrix for the EfficientNetB4 baseline model
is depicted in Fig. 3. It is worth mentioning that although
EfficientNetB4 achieved the best performance among the
baseline models in terms of accuracy, Fl-score, and recall,
MobileNetV2 achieved a marginally higher precision (96.51%
vs. 96.47%), although such a difference can be considered as
negligible. The difference in classification metrics between the
baseline and the proposed models is presented in TABLE II,
whereas the confusion matrices for the best performing pro-
posed and baseline models are depicted in Fig. 3.

B. Comparison to state of the art

In a recent work that used the examined COVIDx-US
dataset, Adedigba et al. [33] reported a classification accu-
racy of 99.74% using MobileNetV2 [29] and 99.75% using
SqueezeNet [34]. However, this work was conducted on a
previous version of the dataset that contained a total of 174
LUS videos, compared to 220 contained in the current version
(Version 1.5) that is used in this work. Furthermore and
most importantly, in their work, Adedigba et al. [33] opted
to simplify the examined 4-class problem and focus on the
COVID-19 vs. Non-COVID-19 problem by grouping together
all images that did not belong to the COVID-19 class and an-
notating them as Non-COVID-19. Consequently, the reported
accuracy refers to the aforementioned binary classification
problem. To evaluate our proposed approach and provide a



TABLE II: Difference (A) between the metrics’ values
achieved for the proposed method and the base CNN method.

Base CNN A A A A
Accuracy Precision Recall F1
MobileNetV2 2.59 2.63 2.96 2.78
InceptionV3 2.85 2.73 2.72 2.73
InceptionResNetV2 2.95 2.95 3.66 3.33
Xception 5.60 4.96 4.70 4.86
ResNet50V2 3.14 3.38 3.35 3.37
EfficientNetB4 2.60 2.77 2.52 2.79
DenseNet121 2.81 2.88 3.21 3.04
DenseNet169 2.61 2.69 291 2.77
DenseNet201 2.87 2.79 3.31 3.08
Mean 3.11 3.09 3.26 3.19
St. Dev. 0.90 0.69 0.61 0.63

fair evaluation against the Adedigba et al. [33] approach, we
first replicated their experiment using the current version of
the COVIDx-US dataset. Classification performance for the
COVID-19 vs. Non-COVID-19 binary problem was indeed
consistent with the one reported by Adedigba et al. [33].
However, when examined on the 4-class problem, the accuracy
of the MobileNetV2 model dropped to 96.73%, as shown in
TABLE I, whereas the proposed approach using MobileNetV?2
as its base CNN achieved an enhanced classification accuracy
of 99.32%.

C. Additional Discussion

It is clear from TABLE I and TABLE II that for each of
the base models under consideration, the proposed technique
outperformed the baseline approach in terms of all perfor-
mance metrics. In addition, regardless of the base CNN model
utilised, the proposed approach consistently offered better clas-
sification performance in terms of all the metrics. As shown
in TABLE II, the introduction of the US probe information
led to an average increase of +3.11% (£0.90) in accuracy,
+3.09% (£0.69) in precision, +3.26% (£0.61) in recall, and
+3.19% (40.63) in F1-score for all the baseline CNN models.
The results achieved for both the proposed and the baseline
approach are quite stable, with the proposed models achieving
an Fl-score between 99.27%, using MobileNetV?2 as the base
CNN, and 99.97% using Xception as the base CNN, compared
to the baseline models that achieved an Fl-score between
95.11% for Xception and 96.58% for EfficientNetB4. The
stability of the examined models is also evidenced by the
low standard deviations computed across all models for all
the examined performance metrics, as shown in the last row
of TABLE L

Considering the above, as well as the presented results, it is
evident that the proposed multi-modal method of combining
LUS image-based CNN features with information about the
US probe type used to acquire the input LUS image can
outperform models that rely solely on pre-trained CNN models
for classifying LUS images into “COVID-19”, “Normal”,
“Pneumonia”, and “Other” (4-class problem). Furthermore,
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Fig. 4: F1-score (%) achieved for the proposed and the baseline
models in relation to the number of parameters of each model.

despite the proposed model based on the Xception CNN model
achieving the best classification performance, it is evident from
TABLE I that all models performed considerably well, thus
providing the flexibility to the user to decide on the model to
be used based on its computational complexity, by selecting
the model with the lowest amount of parameters that achieves
an acceptable performance, as shown in Fig. 4.

IV. CONCLUSION

In this work, we proposed a multi-modal approach for
the classification of lung ultrasound images for the task of
distinguishing them between “COVID-19”, “Normal”, “Pneu-
monia”, and “Other (lung diseases/conditions)”. The proposed
approach relies on the fusion of image-based CNN features
with information regarding the type of ultrasound probe (linear
or convex) used to acquire the input image. Experimental
results on a large lung ultrasound image dataset containing
22,776 lung ultrasound images demonstrated the superiority
of the proposed approach compared to solely using the base
CNN model for the classification of the images. The highest
classification accuracy of 99.98% and highest Fl-score of
99.97% were achieved using the proposed combination of
probe information with the pre-trained Xception CNN model,
compared to the highest accuracy of 96.81% and highest F1-
score of 96.58% achieved using solely the EfficientNetB4 pre-
trained CNN model. For future work, we plan to examine
the incorporation to the model of more information related to
the patients, such as various symptoms, as well as evaluate
our models on additional lung ultrasound datasets that contain
information about the type of probe used to acquire the images.
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