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Abstract—Object detection has been thoroughly investigated
during the last decade using deep neural networks. However, the
inclusion of additional information given by multiple concurrent
views of the same scene has not received much attention. In
scenarios where objects may appear in obscure poses from
certain view points, the use of differing simultaneous views can
improve object detection. Therefore, we propose a multi-view
fusion network to enrich the backbone features of standard
object detection architectures across multiple source and target
view points. Our method consists of a transformer decoder
for the target view that combines the remaining source views
feature maps. In this way, the feature representation of the
target view can aggregate feature information from the source
view through attention. Our architecture is detector-agnostic,
meaning it can be applied across any existing detection backbone.
We evaluate performance using YOLOX, Deformable DETR
and Swin Transformer baseline detectors, comparing standard
single view performance against the addition of our multi-view
transformer architecture. Our method achieves a 3% increase
of the COCO AP over a four view X-ray security dataset
and a slight 0.7% increase on a seven view pedestrian dataset.
We demonstrate that the integration of different views using
attention-based networks improves the detection performance of
multi-view datasets.1

I. INTRODUCTION

Object detection is a fundamental task in computer vision,
comprising the localisation of objects of interest within an
image. Recent advances in deep neural networks have made it
possible to achieve high-accuracy, real-time automatic object
detection. Multi-view object detection refers to localising
objects of interest given multiple images of the same scene
where the view points of each image may be either fully
or partially overlapping. In this context, these views can be
used in conjunction to improve detection performance but
the investigation of deep neural network architectures that
specifically exploit this condition remains limited.

Modern detectors consist of three subnetworks: backbone,
neck and head. The backbone is responsible of extracting the
feature maps and are usually taken from high accuracy image
classification networks, such as VGG [1], ResNet [2] and
Darknet [3]. Some detectors include a subnetwork, sometimes
called the neck, that is used to aggregate features from differ-
ent layers of the backbone. The head of the detector localises
the objects based on the feature maps from the backbone (or
neck). A trend that is arising in the computer vision context is
the implementation of the Transformer architecture proposed
by Vaswani et al. [4]. The Transformer is an attention based

1Code available at https://github.com/KostadinovShalon/MVViT

network that has been the dominant approach in sequence to
sequence tasks [5]–[7]. It consists of an encoder that obtains
a representation of the input, and a decoder that takes the
output of the encoder and generates the target sequence in
an autoregressive fashion. The basic building block of the
transformer encoder is a self-attention layer followed by a feed
forward layer. Similarly, the Transformer decoder has a self-
attention layer and a feed forward layer, but it also includes
an additional attention layer where the source sequence is
the encoder output. Carion et al. [8] proposed the Detection
Transformer (DETR), the first architecture that implements
a Transformer for object detection, using it as the head of
the detector. Zhu et al. [9] further improved DETR by using
deformable attention. A recent successful implementation of
the Transformer for image classification is the Vision Trans-
former (ViT) by Dosovitskiy et al. [10] and its subsequent
improvements [11], [12].

In certain circumstances, object detection using multiple
concurrent views of the same scene is possible. In this context,
detection accuracy is evaluated on each view independently,
although objects can be predicted using the views jointly. This
is of interest in scenarios where objects can be highly occluded
in one view, but are clearer in another view, such as in
multi-camera visual surveillance, autonomous vehicle sensing
solutions and multi-view X-ray security screening. Although
some works have addressed multi-view object detection [13]–
[16], detailed consideration of this task remains fairly lim-
ited. Furthermore, the use of modern architectures based on
attention has not been investigated thoroughly, leading us to
propose a novel architecture based on a Transformer decoder
that uses the feature representations across multiple concurrent
views to improve detection accuracy.

In this work we address multi-view object detection by
using such a Transformer based architecture to combine the
intermediate features from multiple concurrent views using
the backbone of a standard object detection architecture. The
fusion of these features is carried out by a Transformer decoder
using the target view feature vectors as queries attending to
the features from a source view. In this sense, the feature
representation is aggregated with the information from other
views, making it aware of the 3D scene geometry. We apply
the Transformer decoder to each view, so all views are target
and source at the same time. For scenarios with more than two
views, we propose to account for the feature maps of each of
the source views via concatenation. We call our method Multi-
view Vision Transformers (MVViT).

https://github.com/KostadinovShalon/MVViT


Fig. 1. MVViT for Object Detection: architectural design and overview.

Our key contributions are as follows:
– A novel Transformed-based architecture for multi-view

object detection. Our method aggregates the feature rep-
resentation of each view hence constructing a joint feature
representation with awareness of the underlying 3D scene
geometry.

– Consideration of three object detection architectures,
YOLOX [17], Deformable DETR [9] and Swin Trans-
formers [18], where our MVViT is integrated. It is shown
that MVViT could improve multi-view object detection
in both cases, demonstrating that it is detector agnostic.

– Improved multi-view object detection performance com-
pared to a single view baseline, for both a multi-camera
surveillance dataset (+0.7% COCO AP, +0.7% COCO
AP0.5) and an X-ray security imagery dataset (+3.0%
COCO AP, +1.9% COCO AP0.5).

II. RELATED WORK

We review recent work on general multi-view object detection
(Section II-A) and specifically Transformer architectures for
object detection (Section II-B).

A. Multi-view Object Detection

Recent work explicitly addressing multi-object detection
using contemporary detection architectures is limited [13]–
[16], [19], [20]. Nassar et al. [19] apply a convolutional
neural network that takes multi-view images and correspond-
ing geolocation information as inputs and uses a joint loss
function considering all views, resulting in an increase of
the detection mAP by up to 27.8%. A different approach by
Isaac-Medina et al. [14] apply a post-processing algorithm
to eliminate detections that do not lie in the epipolar line
between two views using the probability distribution of objects

centroids, improving the overall detection mAP by 2.8%. With
a similar application context to one of our evaluation cases,
Steitz et al. [13] investigate merging features from multi-view
X-ray baggage imagery using a 3D pooling layer and rely on
geometric constraints that result from multiple 2D detection
projections processed through a 3D region proposal network
and a 3D region-based alignment layer to achieve improved
average precision (+6.73% single class, firearms).

B. Transformers for Object Detection

The seminal Transformer based detector, DETR [8], com-
prises a ResNet as backbone and a Transformer head. Features
are flattened and given a positional encoding that is fed into
the encoder whilst the decoder, on the other hand, is fed with
a fixed number N of learnable object queries that uses the
encoded feature maps to predict the object instances. This
process is done in parallel, contrary to the autoregressive
nature of the Transformer architecture used in transduction
models. In contrast to earlier detection architectures, DETR
eliminates the need of anchor boxes by using a set-based
loss, comparing the N predicted boxes to the ground truth
(where the number of ground truth boxes is always lower
than N ). Boxes that are not paired with a ground truth
object are assigned to a special background class. Vision
Transformers (ViT) can similarly be used as feature extractors
[10]. ViT divides the image into patches that are treated as
an input sequence. The addition of a class token prepended
to the input patches is used to learn the class by attending
to every patch element. Beal et al. [21] show that ViT can
be used as a backbone for object detection. Furthermore, Liu
et al. [18] improve the detection accuracy with the Swin
Transformer, adding multi-scale feature maps and reducing
the ViT complexity from O(n2) to O(n) by implementing



a shifted-window self-attention pattern. A recent work from
Hou and Zheng [16] addresses multi-view pedestrian detection
by using a DETR architecture with multi-view attention. In
order to account for spatial consistency, they use a projective
transform to the common ground plane.

III. MULTI-VIEW VISION TRANSFORMERS

This work implements the Transformer decoder architecture
to leverage from multiple view points feature maps to create a
feature representation as awareness of the underlying 3D scene
geometry. Our method, the Multi-view Vision Transformer
(MVViT), acts as an extra layer within the backbone of the
existing baseline detection architecture and it is depicted in
Figure 1.

For each view i = 1, ..., v, MVViT applies a Transformer
decoder taking the intermediate feature map zi ∈ RW ′×H′×C

as input and the remaining views feature maps zj , j ̸= i as
source views for the attention layer (Figure 1a). Following
the ViT architecture, each decoder that comprises MVViT
is composed of a multi-head self-attention layer, a multi-
head attention module and a feed forward network consisting
on two linear layers with internal dimension df . All of
the sub-modules use residual connection followed by layer
normalisation [22].

The attention mechanism, which is the basic building block
of Transformers, can be described as a weighted sum based on
a similarity function. Given N query dk dimensional vectors
embedded in the matrix Q ∈ RN×dk and M pairs of key and
value matrices K ∈ RM×dk and V ∈ RM×dv of dk and dv
dimensional vectors, the attention mechanism is described as:

Attention(Q,K, V ) = sim (Q,K)V , (1)

where sim(·, ·) is a similarity function. A popular choice for
the similarity function is the scaled dot product followed by a
softmax operation, that is:

sim(Q,K) = softmax

(
QK⊺

√
dk

)
. (2)

Transformers define a multi-head attention (MHA) mecha-
nism, where the attention inputs are linearly projected h times
and attention is applied on each projection. This can be written
as:

MHA(Q,K, V ) = concat (head1, ..., headh)W
O ,

headi = Attention
(
QWQ

i ,KWK
i , VWV

i

)
, i = 1, ..., h ,

(3)

where WQ
i ∈ Rdk×dm , WK

i ∈ Rdk×dm , WV
i ∈ Rdv×dm and

WO ∈ Rhdm×dk are learnable linear projections.
The feature map zi can be seen as a W ′×H ′ grid of feature

vectors that serve as a sequence input for the decoder. These
feature vectors are the object queries in our attention functions
and an attention map of the source view is obtained for each of
them. To achieve this, we modify the original implementation
of the Transformer to use batched matrix multiplications in
Equation (3) instead of being flattened to a 1D sequence.

In order to account for cases with more than one source
view, we concatenate the source views in the feature dimension
Vi = concat({zj}j ̸=i) ∈ RW ′×H′×(v−1)C and apply MHA,
that is:

MVMHA(zi, {zj}j ̸=i) = MHA (zi,Vi,Vi) . (4)

In this context, the target view attends to the source views at
the same time, making it possible to vanish the attention from
views where object instances do not appear in a source view
overlapping field of view.

IV. EVALUATION

Our evaluation is based on two different multi-view datasets
(Section IV-A), with implementation details presented for
repeatability (Section IV-B) and measured using the MS-
COCO detection metrics [23].

A. Dataset

Wildtrack: the Wildtrack seven-camera HD dataset [24] com-
prises a set of 7 outdoors concurrent videos from different
points of view with only one class. This dataset includes
scenarios where instances may appear in one view but not in
the other. A total of 2,240 images and 33,962 object instances
accounting for all views were used for training and 560 images
and 8,571 object instances for validation.
X-ray-Quad: we use false-coloured X-ray cabin baggage
security imagery from a Smith Detection security scanner
with four views. A total of 10,112 images were scanned and
four object categories were identified (4,260 firearms, 2,376
laptops, 4,736 knives and 664 cameras). We used a split of
80% for training and 20% for testing. To assess the impact
of the number of viewpoints, a partition X-ray-Dual is also
assessed, with only two perpendicular views.

B. Implementation details

In order to assess the performance of MVViT in different
detectors, YOLOX-S [17], Deformable DETR [9] and Swin
Transformer [18] architectures are used as baselines. The
Swin Transformer backbone is used in conjunction with a
Faster-RCNN architecture [25], similarly to the original work.
MixUp, Mosaic and Random Affine augmentations were re-
moved in the YOLOX-S implementation, since they are not
multi-view consistent. In order to avoid an increased perfor-
mance due to having larger datasets in the implementation of
the MVViT, the same datasets were used when comparing
to the single-view (sv) baselines, with the difference that
different views from the same when are used to create the 3D
aware features in MVViT layers. Input images for YOLOX-
S are square padded (with a white background for X-ray
datasets and a grey background for the Wildtrack dataset) and
resized to 640× 640, while the input images for Deformable
DETR and Swin Transformer are kept to a maximum size
of 1333 for the X-ray-Dual dataset and 800 for X-ray-Quad
and Wildtrack datasets. MVViT is applied before the fourth
CSP block of the YOLOX-S backbone (Modified CSPNet
v5 [26]), after the conv4 block of the Deformable DETR



(a)

(b)

Fig. 2. Exemplar multi-view object detections contrasting single view (SV) and multi-view vision transformers (MVViT) performance for the Wildtrack
dataset (a) and the X-ray-Quad dataset (b).

backbone (ResNet-50) and before the fourth stage swin block
of the Swin Transformer. We use 8 heads for the MHA
modules, internal decoder dimension dk = 512 and feed
forward dimension df = 2048. ReLU activations are used and
a dropout with a rate of 0.1 is applied after each MVViT
layer. The model is trained using Stochastic Gradient Descent
for YOLOX-S and AdamW optimization [27] for Deformable
DETR and Swin Transformer. A batch size of 6 images per
view is used to train YOLOX for both X-ray datasets and
2 images per view for the Wildtrack dataset. On the other
hand, a batch size of 2 images per view is used to train
Deformable DETR for the X-ray-Dual dataset and 1 image
per view for both X-ray-Quad and Wildtrack datasets. Finally,

a batch size of 4 is used for both X-ray datasets and 3 for
the Wildtrack dataset. MMDetection [28] framework was used
with the original training and optimisation settings for the three
detectors. Models were trained using an NVIDIA Tesla V100.

V. RESULTS

The statistical performance of MVViT compared with single
view detection is presented in Table I. For the X-ray-Dual
and X-ray-Quad datasets, results for each class, as well
as for all classes are presented. MVViT outperforms single
view detection in the Wildtrack dataset only for the Swin
Transformer architecture, with a slight increment of 0.7%
in the COCO AP, while small decrements are seen in the



TABLE I
SINGLE VIEW VS MVVIT DETECTION - STATISTICAL PERFORMANCE

Dataset Architecture Category Method AP AP0.5 AP0.75 APS APM APL AR ARS ARM ARL

Wildtrack

YOLOX-S Person
SV 0.383 0.773 0.334 - 0.299 0.412 0.492 - 0.453 0.514

MVViT 0.370 0.764 0.301 - 0.274 0.409 0.471 - 0.368 0.511

Deformable DETR Person
SV 0.417 0.772 0.388 - 0.335 0.450 0.587 - 0.515 0.613

MVViT 0.401 0.761 0.368 - 0.318 0.432 0.577 - 0.513 0.601

Swin Transformer Person
SV 0.367 0.780 0.267 - 0.266 0.408 0.489 - 0.449 0.508

MVViT 0.374 0.784 0.300 - 0.274 0.419 0.503 - 0.463 0.522

X-ray-Dual

YOLOX-S

Firearm
SV 0.624 0.939 0.730 - 0.633 0.709 0.674 - 0.666 0.796

MVViT 0.695 0.972 0.830 - 0.704 0.747 0.735 - 0.729 0.832

Knife
SV 0.242 0.540 0.169 0.093 0.280 0.048 0.349 0.118 0.366 0.425

MVViT 0.285 0.619 0.229 0.098 0.325 0.033 0.383 0.147 0.402 0.350

Laptop
SV 0.710 0.981 0.869 - - 0.710 0.762 - - 0.762

MVViT 0.723 0.990 0.868 - - 0.723 0.771 - - 0.771

Camera
SV 0.566 0.867 0.672 - 0.800 0.562 0.624 - 0.800 0.622

MVViT 0.632 0.896 0.811 - 0.800 0.630 0.688 - 0.800 0.686

All
SV 0.535 0.832 0.610 0.093 0.571 0.507 0.602 0.118 0.611 0.651

MVViT 0.583 0.869 0.685 0.098 0.610 0.533 0.644 0.147 0.644 0.660

Deformable DETR

Firearm
SV 0.674 0.968 0.816 - 0.685 0.667 0.741 - 0.735 0.832

MVViT 0.680 0.960 0.817 - 0.689 0.679 0.743 - 0.738 0.818

Knife
SV 0.251 0.626 0.142 0.139 0.285 0.033 0.428 0.162 0.450 0.325

MVViT 0.237 0.598 0.116 0.112 0.269 0.159 0.423 0.135 0.444 0.425

Laptop
SV 0.803 0.990 0.947 - - 0.803 0.855 - - 0.855

MVViT 0.839 0.995 0.953 - - 0.839 0.879 - - 0.879

Camera
SV 0.646 0.918 0.837 - 0.700 0.647 0.738 - 0.700 0.738

MVViT 0.601 0.847 0.739 - 0.800 0.600 0.723 - 0.800 0.722

All
SV 0.593 0.876 0.686 0.139 0.557 0.537 0.691 0.162 0.628 0.688

MVViT 0.589 0.850 0.656 0.112 0.586 0.569 0.692 0.135 0.661 0.711

Swin Transformer

Firearm
SV 0.698 0.989 0.873 - 0.705 0.747 0.741 - 0.735 0.821

MVViT 0.702 0.989 0.898 - 0.711 0.718 0.746 - 0.741 0.818

Knife
SV 0.419 0.821 0.370 0.189 0.449 0.311 0.493 0.279 0.507 0.675

MVViT 0.428 0.847 0.381 0.219 0.458 0.317 0.499 0.315 0.512 0.700

Laptop
SV 0.833 0.991 0.976 - - 0.833 0.876 - - 0.876

MVViT 0.820 0.987 0.976 - - 0.820 0.864 - - 0.864

Camera
SV 0.680 0.967 0.836 - 0.700 0.681 0.721 - 0.700 0.722

MVViT 0.668 0.976 0.806 - 0.700 0.669 0.723 - 0.700 0.723

All
SV 0.657 0.942 0.764 0.189 0.618 0.643 0.708 0.279 0.648 0.773

MVViT 0.655 0.950 0.765 0.219 0.623 0.631 0.708 0.315 0.651 0.776

X-ray-Quad

YOLOX-S

Firearm
SV 0.734 0.973 0.884 - 0.742 0.787 0.767 - 0.759 0.845

MVViT 0.748 0.979 0.907 - 0.760 0.790 0.779 - 0.774 0.838

Knife
SV 0.353 0.693 0.331 0.150 0.392 0.022 0.447 0.188 0.459 0.325

MVViT 0.379 0.732 0.346 0.152 0.414 0.051 0.461 0.178 0.475 0.325

Laptop
SV 0.765 0.987 0.909 - - 0.765 0.812 - - 0.812

MVViT 0.806 0.992 0.946 - - 0.806 0.844 - - 0.844

Camera
SV 0.639 0.899 0.778 - 0.800 0.639 0.688 - 0.800 0.687

MVViT 0.678 0.926 0.840 - 0.700 0.678 0.726 - 0.700 0.726

All
SV 0.623 0.888 0.726 0.150 0.644 0.553 0.678 0.188 0.673 0.667

MVViT 0.653 0.907 0.760 0.152 0.625 0.581 0.703 0.178 0.650 0.683

Deformable DETR

Firearm
SV 0.726 0.978 0.885 - 0.740 0.711 0.784 - 0.779 0.832

MVViT 0.724 0.997 0.884 - 0.735 0.720 0.788 - 0.782 0.854

Knife
SV 0.352 0.751 0.286 0.123 0.390 0.143 0.501 0.163 0.517 0.375

MVViT 0.347 0.760 0.261 0.140 0.386 0.085 0.506 0.161 0.521 0.438

Laptop
SV 0.847 0.984 0.970 - - 0.847 0.896 - - 0.896

MVViT 0.859 0.993 0.977 - - 0.859 0.912 - - 0.912

Camera
SV 0.646 0.896 0.772 - 0.800 0.647 0.773 - 0.800 0.773

MVViT 0.674 0.909 0.836 - 0.700 0.674 0.772 - 0.700 0.773

All
SV 0.643 0.902 0.728 0.123 0.643 0.587 0.738 0.163 0.699 0.719

MVViT 0.651 0.910 0.739 0.140 0.607 0.585 0.745 0.161 0.668 0.744

Swin Transformer

Firearm
SV 0.742 0.990 0.932 - 0.755 0.770 0.780 - 0.774 0.846

MVViT 0.738 0.990 0.934 - 0.751 0.758 0.779 - 0.774 0.836

Knife
SV 0.503 0.904 0.515 0.288 0.537 0.290 0.566 0.359 0.574 0.738

MVViT 0.508 0.901 0.531 0.254 0.539 0.305 0.569 0.302 0.580 0.713

Laptop
SV 0.863 0.990 0.977 - - 0.863 0.903 - - 0.903

MVViT 0.873 0.992 0.982 - - 0.873 0.908 - - 0.908

Camera
SV 0.669 0.918 0.854 - 0.800 0.669 0.720 - 0.800 0.720

MVViT 0.671 0.927 0.814 - 0.800 0.670 0.709 - 0.800 0.708

All
SV 0.694 0.950 0.819 0.288 0.697 0.648 0.742 0.359 0.716 0.802

MVViT 0.698 0.952 0.815 0.254 0.697 0.651 0.741 0.302 0.718 0.791



YOLOX-S and Deformable DETR architectures. As seen in
Figure 2a, this dataset has many occlusions across the different
views, which imposes an additional challenge for MVViT. The
results for the X-ray-Dual dataset show an improvement when
training with YOLOX-S, with an increase of 4.8% on the AP
metric and 6.7% on the AP0.5 metric. The performance gets
slightly worsen when training Deformable DETR and Swin
Transformer with MVViT on the X-ray-Dual dataset. This
effect may be caused by the fact that these architectures obtain
high precision for almost all classes (except for knives). The
remaining not-detected objects present a significant detection
challenge against which further advancement may adversely
impact overall network performance across other classes. On
the other hand, the precision of the three detectors improves
when using MVViT on the X-ray-Quad dataset, with an in-
crease of 3% AP, 1.9% AP0.5 with the YOLOX-S architecture,
and small increments of 0.8% and 0.4% on the AP when using
the Deformable DETR and Swin Transformer architectures.
These results indicates that the performance can be increased
if the model integrates features from different views, having
a better performance when more views are used. However, as
seen in the performance on the Wildtrack dataset, it is sensitive
to highly occluded data.

Figure 2a shows an example of single view detection
compared with our method for the Wildtrack dataset (views
1, 5 and 7). Some duplicates and false positives can be noted
when doing single view detection (bottom left people in view
7). When using the MVViT module, the detector is able to
remove these instances, along with detecting other missed
people. However, some new duplicates can be seen in crowded
areas such as the centre of view 1 and right of view 5.
This indicates that although our network is 3D aware, it is
difficult to cope with highly occluded scenarios. Figure 2b
shows detection examples for the X-ray-Dual dataset. In this
case, a missed knife is detected in view 3 when using MVViT.
This missed knife in view 3 is highly occluded since it is
behind a laptop. However, since it is better seen in view 1,
the aggregated features in view 3 using MVViT allow for
being detected. We hypothesise that the overlapping nature
of transmission images, such as X-ray, puts an additional
difficulty since feature vectors may contain information from
more than one class, which can be alleviated with a MVViT
layer.

Finally, we look qualitatively at the attention map in the
source view given a feature vector in the target view. Figure
3 shows the attention mechanism in the source view given
a feature vector from the target view which spatial location
is represented by a red square. The right image of Figure 3
shows the attention mechanism for the X-ray dataset. When we
look at the attention for a feature vector located at a firearm,
it is noted that the attention in the source view is focused in
different parts of the gun. This is true regarding the view that is
used as the target view. However, it is also noted that MVViT
is not applying attention in all the object instance but only
in small localised regions. A model that captures the shape of
the object instances in the source view through attention could

Fig. 3. Attention mechanism in MVViT: the left image is the target view
where the red square represents the location of the feature vector that gets
the attention whilst the right image is the source view.

improve object detection performance and remains as an area
for future work.

VI. CONCLUSIONS

In this work we present multi-view vision transformers
(MVViT), a novel architecture that uses attention to aggregate
the feature maps across multiple concurrent views within a
standard detection architecture. MVViT takes as input the
feature maps of a target view and applies attention on the
feature maps of the other concurrent source views to create
3D scene geometry aware feature representations.

We investigate the performance of MVViT for a quad-view
X-ray security scanner imagery dataset, obtaining an overall
COCO AP increase of 4.8% for two views and 3% with
four views using the YOLOX-S detector. Additionally, a slight
increase in the performance is also observed with four views
and using the Deformable DETR and Swin Transformer archi-
tectures. A decrease on the performance was observed when
using a Deformable DETR and Swin Transformer detectors
for the two views X-ray dataset, apparently caused by the
detectors already reaching the best performance. It is also
observed that our method increases the AP of a seven-view
pedestrian dataset by 0.7% with the Swin Transformer archi-
tecture, but it fails with YOLOX-S and Deformable DETR.
This indicates that the highly occluded nature of the Wildtrack
dataset imposes a greater challenge for MVViT. Additionally,
we look at the attention maps in the source views with respect
a feature vector in the target view. It is further observed that the
attention in the source view matches the corresponding feature
vector from the target view, although it does not capture the
whole region of interest. Future work will investigate the role
of the depth in MVViT and its application to different datasets
and detector models, as well as new detection models based
on attention.
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