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Abstract—Detecting human-object interactions is essential for
comprehensive understanding of visual scenes. In particular,
spatial connections between humans and objects are important
cues for reasoning interactions. To this end, we propose a
skeleton-aware graph convolutional network for human-object
interaction detection, named SGCN4HOI. Our network exploits
the spatial connections between human keypoints and object
keypoints to capture their fine-grained structural interactions
via graph convolutions. It fuses such geometric features with
visual features and spatial configuration features obtained from
human-object pairs. Furthermore, to better preserve the object
structural information and facilitate human-object interaction
detection, we propose a novel skeleton-based object keypoints
representation. The performance of SGCN4HOI is evaluated in
the public benchmark V-COCO dataset. Experimental results
show that the proposed approach outperforms the state-of-the-
art pose-based models and achieves competitive performance
against other models.

Index Terms—human-object interaction, graph convolutional
network, deep learning, human pose, object skeleton

I. INTRODUCTION

Human-object interaction (HOI) detection is a core prob-
lem for in-depth understanding of visual scenes. The task re-
quires localizing instances (humans and objects) and predict-
ing their interactions in the form of ⟨human, action, object⟩
from a given image. It plays an important role in analyzing
visual scenes, such as visual question answering [1] and
activity analysis [2].

Recent HOI detection approaches can roughly be divided
into transformer-based methods [3]–[5] and non-transformer
methods [6]–[8]. Particularly, the transformer-based models
have shown superior performance, yet they require a large
amount of memory and are difficult to train under limited
resources. As there has been significant progress in object
detection such as Faster R-CNN [9] and DETR [10], many
HOI models [11], [12] utilized them to simplify the HOI
detection task, resulting in a good trade-off between perfor-
mance and complexity. However, as a human can interact
with multiple objects and vice-versa, it remains challenging
for these models to detect HOIs from visual image features.
Human-object pairs with different interactions may share
indistinguishable appearance or spatial configuration, which
confuses classifiers that use such features.

The advantage of modelling the mutual contexts of human
pose and object in addition to their co-occurrence has been
demonstrated in the literature [13]. Most existing pose-based
methods [14]–[16] simply use convolutional networks for
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human poses embedding, this can be inadequate for capturing
the fine-grained human skeleton structure that is useful for
HOI detection. For example, the “foot” and “legs” should
be paid more attention than other human body parts in
the scene of “kick football”. To address this, Zheng et al.
[17] propose to use graph convolutional networks (GCN) for
modelling the structured connections in human skeletons and
the fine-grained interactions between human keypoints and
object keypoints. They simply use two corner points of the
object bounding box, however, either the 2-d points or 4-d
bounding box representation considers only the rectangular
spatial scope of an object and does not account for the shape
and pose of semantically important local areas [18], [19].

In this paper, we propose a skeleton-aware graph con-
volutional network that makes use of both human skeleton
keypoints and object skeleton keypoints for HOI detection,
namely SGCN4HOI. Our idea is to utilize the keypoints
from skeletons of humans/objects to capture their structural
connections and as a guide to differentiating HOIs with subtle
appearances and different structures. To this end, the graph
convolutional network is exploited by considering keypoints
of instances as nodes to capture their fine-grained spatial
interactions, and we refer to this network as a spatial skeleton
stream. In addition, to make full use of the available features,
we add a visual stream that learns visual features from im-
ages and a spatial configuration stream that learns interaction
patterns of human-object pairs to the framework. The two
streams have proven to be effective and are commonly used
in existing works [6], [11], [12]. The three streams form our
final multi-stream framework for HOI detection.

We also propose a novel skeleton-based method for rep-
resenting object keypoints due to the limited literature on
object skeleton and keypoints representation in HOI detec-
tion. Unlike humans that often have fixed skeleton structure,
different kinds of objects usually have different structures,
thus it is difficult to apply a unified algorithm for representing
them. The dominant method for representing objects in object
detection and HOI detection is object bounding box, which
is too coarse to represent object’s structure. Recent research
such as [20] propose to replace the bounding box with a
convex hull consisting of 9 points for object representation,
yet the main focus of their work is to make the object area
more accurate and it is still supervised by the bounding
box. Han et al. [21] propose to encode the coarse-grained
orientation information for aerial object representation, while
the object structure is not explored. Here, we propose to
represent fine-grained object structure information in an indi-
rect manner, i.e., we exploit a morphological skeletonization



approach [22] that works on binary masks to obtain objects’
skeletons. We extract a set of keypoints whose distribution
can represent the objects’ structural information using the
K-means algorithm.

We evaluate our model in the HOI detection benchmark V-
COCO dataset. Our proposed SGCN4HOI achieves state-of-
the-art performance on this dataset compared to pose-based
HOI models and other non-transformer methods.

The contributions of this work is summarized as follows:
• We propose a skeleton-aware graph network that consid-

ers the skeletons of both humans and objects to model
their fine-grained spatial interactions.

• We propose a novel skeleton-based object keypoints
representation method to preserve object structural in-
formation. To the best of our knowledge, this is the first
work that exploits object structure representation in HOI
detection.

• We demonstrate the effectiveness of our proposed model
by conducting experiments in the public HOI detection
benchmark V-COCO [6] dataset. Our code is available
at https://github.com/zhumanli/SGCN4HOI.

II. RELATED WORKS

In HOI detection, deep learning methods have been widely
used due to its rapid development and superiority in mod-
elling complicated data. In this section, we review the highly
relevant research which focuses on modelling the skeletal
structure of humans and utilizing graph networks.

A. Skeleton-based HOI Detection

Human pose which provides fine-grained cues for HOI
detection has been studied in existing works. Fang et al.
[23] propose a pairwise body-part attention module to guide
the network focusing on important body parts of interaction
detection. Wan et al. [15] propose a zoom-in module to
utilize the human skeleton features for mining interaction
patterns between humans and objects. Generally, the human
skeleton has been well studied in these methods, while the
object skeleton and object keypoints representation are far
less explored. Although Zheng et al. [17] apply the graph
network to model the interactions between human joints and
object keypoints, they simply use two corner points of the
object bounding box. We argue that this is inadequate for
object representation as object sizes and shapes greatly vary
(e.g., a football is different from a horse in either size or
structure). In this paper, we propose a novel skeleton-based
object keypoints representation that benefits HOI detection
by better capturing the underlying structure of the objects.
This is motivated by the success of modelling humans using
the skeletal structure in the literature.

B. Graph Networks for Skeleton-based Action Recognition

Graph neural netoworks have received increasing atten-
tion in skeleton-based action recognition due to the natural
graphic structure of human body. It was firstly adopted in
[24], which represented human body joints as graph nodes to
capture their correlations. Shi et al. [25] exploit the adaptive
adjacency matrix with a fully connected graph to effectively
learn the joint correlations. Zhang et al. [26] propose to use
the similarity between nodes as an adjacency matrix and

inject semantics into human skeleton representation to guide
network learning. In this paper, we bring in these insights
of graph models in action recognition to HOI detection, that
is we model both human keypoints and object keypoints as
graph nodes to learn their fine-grained spatial correlations.

III. OVERVIEW OF SGCN4HOI
In this section, we give an overview of our proposed multi-

stream framework for HOI detection. We start with our model
architecture (Section III-A), followed by a brief introduction
of the backbone VSGNet (III-B). A detailed description of
our proposed skeleton-aware graph convolution network will
be presented in Section IV.

A. Model Architecture

Our model for human-object interaction detection is a two-
stage method that consists of two main steps: i) detecting
instances and ii) predicting interactions for human-object
pairs. First, human/object instances are detected by object
detectors (e.g., Faster R-CNN [9]). Second, we evaluate all
the human-object pairs through the proposed spatial skeleton
stream, the spatial configuration stream, and visual stream
respectively, and the final HOI prediction is obtained by
fusing the three stream’s prediction scores. A graphical
illustration of our framework is shown in Figure 1.

The inputs of our model including bounding boxes bh ∈
R4 for human h ∈ [1, H] and bo ∈ R4 for object o ∈
[1, O], keypoints vh ∈ R17×2 for human and vo ∈ R9×2 for
object. H and O denote the number of humans and objects
respectively from a given image. Our main focus is to capture
fine-grained spatial correlations between humans and objects
by considering their keypoints as graph nodes. The bounding
boxes are obtained from VSGNet [11] which has included
the instance detection using Faster R-CNN [9]. Similar to
previous works [12], [14] that use ground-truth bounding
boxes, we use the ground-truth keypoints of humans, and
apply ground-truth segmentations of objects to extract their
keypoints (details are decribed in Section IV-A).

B. Backbone VSGNet

In order to take advantage of using available features
to facilitate HOI detection, we adopt VSGNet [11] as our
backbone network to generate spatial configuration features
and visual features through two streams:

1) Spatial Configuration Stream: This stream aims to
learn the coarse-grained spatial interactions between humans
and objects from their spatial configuration patterns. The spa-
tial configurations encode the spatial relationship of humans
and objects that help visual features make better predictions
[11], [12]. Given the human bounding box bh and object
bounding box bo, two binary maps are firstly generated by
allocating zeros to the outside area of the bounding box
in the entire image. By stacking them, a 2-channel spatial
configuration map Sho is then generated for each human-
object pair.

The spatial configuration features xSpa
ho of this stream are

obtained by:
xSpa
ho = VSGNet (Sho) (1)

The interaction probabilities are then obtained:

pSpa
ho = σ

(
FC

(
xSpa
ho

))
(2)
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multiplication. The model consists of three main streams. The Spatial configuration stream that extracts coarse-grained spatial features between humans
and objects by utilizing the configuration of their bounding boxes and visual stream that extracts visual features from given images. The spatial skeleton
stream extracts fine-grained spatial interaction features by modelling human keypoints and object keypoints as nodes and similarities between nodes plus
learnable weights as edges. HOI probabilities from each stream are multiplied together as the final prediction.
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Fig. 2. Illustration of object keypoints extraction.

where σ is the sigmoid function, FC is the fully connected
network, and pSpa

ho is the action class probabilities with the
dimension that equals the number of action categories.

2) Visual Stream: This stream extracts visual features for
human-object pairs from images. It learns the human visual
feature, object visual feature, and the global context (i.e.,
the entire image) feature from the human bounding box,
object bounding box, and human-object union bounding box,
respectively. Here, the context provides scene-specific global
cues which are helpful for HOI prediction.

The refined visual features by spatial configuration fea-
tures are obtained:

xV is
ho = VSGNet

(
bh,bo,x

Spa
ho

)
(3)

We then obtain the interaction prediction pV is
ho of this

stream as follows:

pV is
ho = σ

(
FC

(
xV is
ho

))
(4)

IV. SKELETON-AWARE GRAPH CONVOLUTIONAL
NETWORK

As the core of our framework, we propose to capture the
fine-grained spatial correlations between humans and objects
by using graph networks with keypoints of both of them. We
first introduce the object keypoints representation, then the
proposed skeleton-aware graph network will be presented.

A. Object Keypoints Representation

We now introduce how do we extract object keypoints and
it consists of three main steps. Given an image (Figure 2(a)),
we fist obtain the ground-truth mask of the object which is
a dog in this example (Figure 2(b)), we take the following
steps to obtain its keypoints:

(i) Skeleton Extraction. We exploit a morphological skele-
tonization algorithm [22] on segmentation to represent
object skeletons, aiming to obtain the object structure
information to facilitate the modelling of fine-grained
spatial relations between the object and human. The
idea is to utilize the well-studied object segmentation
and available skeletonization algorithms to obtain an
object’s skeleton in an indirect manner. Concretely, we
use the scikit-image library (in Python) that works on
binary masks to generate object skeleton as shown in
Figure 2(c).

(ii) Key-point Set Generation. The ending points and
intersecting points of the skeleton are considered key
points since they represent the topology of the shape
of the object. Same as [27], an ending point is a pixel
(point) with only one neighbor, and an intersecting point
is a pixel with two or more neighbors. Specifically, we
generate a 9×9 grid centered at each skeleton pixel and
count the number of its adjacent pixels. By doing so, the
key points are then extracted, which form a key-point
set (dense blue points in Figure 2(d)).

(iii) Keypoints Extraction. In order to better preserve the



object skeleton structural information, we apply the K-
means algorithm on the key-point set to obtain a certain
number (9 in our experiment) of keypoints for an object.
The K-means algorithm aims to partition the input data
into k partitions (clusters) and can be used to get an
intuition about the structure of the data. Here we are
trying to represent the object’s skeletal structure using
a spare set of keypoints. The K-means clustering is
suitable for our goal of object structure representation.
The reason is that it minimizes the intra-cluster variance
of input skeletal points, the resulting finite number
of cluster centers can well represent the local regions
that are part of the object. As shown in Figure 2(e)),
by applying K-means, all the points are clustered into
different groups (represented in different colors) with
the cluster centers colored in red. It can be seen that
the distribution of the cluster centers can represent the
underlying structure of the object, and they are stored
as the final keypoints.

B. Skeleton-aware Graph Convolution Network

We construct a spatial graph G = (V,E) with the
keypoints of humans and objects as graph nodes to learn their
fine-grained structural connections. Similarities/affinities be-
tween nodes plus learnable weights are the edge connectiv-
ities during graph learning, such that we can have a fully
connected graph to fully exploit the correlations between
all the nodes, which has proved to be effective in action
recognition [25], [26].

Specifically, Vh = {vi|i = 1, 2, 3, · · · , J} and Vo =
{vi|i = J + 1, J + 2, J + 3, · · · , J +K} are the keypoint
sets for human and object separately, where J and K are
the number of keypoints of human and object respectively.
The graph node set V = {Vh ∪ Vo}, the edge set E = {∅}
is the initial input. For the sake of simplicity and readability,
a simplified example is shown in Figure 3 by focusing
on a single object keypoint. The object keypoint not only
connects to its intra-class points (green points of this object,
orange dotted connections) but also connects to all the inter-
class points (light blue points of the human, yellow dotted
connections).

Fig. 3. Illustration of the graph structure. The connections of a single object
keypoint is shown in this example for the sake of simplicity and readability.

Given the keypoint locations of a human and an object,
we obtain their embeddings which are the inputs of graph
convolutions using FC layers with ReLU activation function:

fin = ReLU
(
FC2

(
ReLU

(
FC1

(
vh/o

))))
(5)

Once the embeddings of keypoints are obtained, we im-
plement a residual graph convolution layer as follows, and
its structure is shown in Figure 4.

fout = FC (fin) + GCN(fin, (A+B)) (6)

where FC (fin) is the residual connection, GCN() is the
graph convolution operation. (A+B) ∈ R(J+K)×(J+K) is
the adjacency matrix, in which A is fully learnable and its
values are initialized as ones (i.e., adaptively adjust the values
during learning), it can play the same role of the attention
mechanism as it indicates the strength of the connections
between two nodes. B is a data-dependent adjacency ma-
trix represented by nodes similarities/affinities to determine
whether there is a connection between two nodes and how
strong the connection is [25]. The addition operation between
A and B provides more flexibility than the commonly used
dot multiplication on the adjacency matrix, that is if some
elements of A are zeros, it still can generate connections by
B. The nodes similarities are defined as follows:

s(i, j) = θ (vi)
T
ϕ (vj) (7)

where θ and ϕ are transformation functions, which are
implemented by an FC layer. We then stack three GCN layers
to obtain the graph feature xGraph
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Fig. 4. Illustration of the graph convolution layer with residual connection.

Visual image features can be helpful for identifying
same/different objects, for instance, different cellphones of-
ten share similar colors and shapes, but they are different
from bikes. Thereby we use the visual features to refine our
graph feature:

xRG
ho = xGraph

ho ⊗ xV is
ho (8)

The interaction prediction pGraph
ho of this stream is then

made based on the refined graph feature:

pGraph
ho = σ

(
FC

(
xRG
ho

))
(9)

Finally, we combine the predictions from each stream by
multiplying the probabilities to make the final HOI prediction
pho similar to previous works [11], [12], [14], [28]:

pho = pGraph
ho × pV is

ho × pSpa
ho (10)

V. EXPERIMENTS

A. Dataset

To evaluate the performance of our model, we conduct
experiments in the HOI benchmark V-COCO [6] dataset,
which is a subset of the COCO dataset [29]. It has a total of



(a) Keypoints distribution represents object’s underlying structure (b) Keypoints distribution fails for structure representation due to occlusion

Fig. 5. Cases of keypoints distribution. Figures from left to right are: input image, object skeleton, keypoints with K-means clustering.

10,346 images with 16,199 human instances, 2533 images
are for training, 2867 images are for validating, and 4946
images are for testing. Each human is annotated with binary
labels indicating one of 29 different action categories. As
four actions have no object associated with humans, and one
action has limited samples, the results on the rest 24 classes
are reported same as previous works [6], [11], [15].

B. Metrics
We evaluate the performance on the commonly used role

mean average precision (mAP) metrics: Scenario 1 and
Scenario 2. The two scenarios indicate different evaluation
methods for the cases when objects are occluded. In Scenario
1, the object bounding box must be empty, and in Scenario 2
the object bounding box is ignored. A prediction of a human-
object pair is considered a true positive if both the predicted
human and object bounding boxes have IoUs greater than
0.5 with ground-truth annotations and the interaction label is
correct.

C. Implementation Details
Our output features of all three streams have the size of

512 dimensions, followed by an FC layer for the classifica-
tion. The detected bounding boxes from Faster R-CNN [9]
are filtered by setting 0.6 confidence threshold for humans
and 0.3 for objects.

We implement our network based on VSGNet [11] and use
Resnet-152 [30] as the backbone for visual feature extraction.
We train our network on the V-COCO train and validation
sets for 60 epochs with Stochastic Gradient Descent (SGD)
optimizer, a batch size of 16, a learning rate of 0.005, a
weight decay of 0.0001, and a momentum of 0.9.

D. Comparisons with the State of the Art
We evaluate the performance of our proposed SGCN4HOI

model and compare it with the state-of-the-art pose-based
methods and other models in the HOI benchmark V-COCO
dataset. We report the mean Average Precision (mAP) score
in two settings provided in [6].

Table I shows that our model performs on par with or bet-
ter than the pose-based methods in Scenario 1 and achieves
state-of-the-art performance in Scenario 2. Compared to
those methods, our model adds object structure information
in addition to the human pose. By utilizing GCN to capture
their fine-grained spatial interactions, the results show an
improvement in the performance of HOI detection.

TABLE I
COMPARISON OF PERFORMANCE WITH POSE-BASED METHODS. AP#1

role

AND AP#2
role REPRESENT THE PERFORMANCE UNDER SCENARIO1 AND

SCENARIO2 IN V-COCO RESPECTIVELY.

Pose-based Method Backbone AP#1
role AP#2

role
RPNN [31] ResNet-50 - 47.5
TIN∗ [14] ResNet-50 48.7 -

PastaNet [32] ResNet-50 51.0 57.5
PMFNet [15] ResNet-50 52.0 -
PD-Net [23] ResNet-152 52.0 -
ACP∗ [33] ResNet-152 53.0 -

FCMNet [34] ResNet-50 53.1 -
SIGN [17] ResNet50-FPN 53.1 -

SGCN4HOI ResNet-152 53.1 57.9

TABLE II
COMPARISON OF PERFORMANCE WITH OTHER METHODS. OUR MODEL

ACHIEVES A GOOD TRADE-OFF BETWEEN PERFORMANCE AND
COMPUTATIONAL COMPLEXITY COMPARING WITH

TRANSFORMER-BASED MODELS.

Other Method Backbone AP#1
role AP#2

role
VSRL [6] ResNet-50 31.8 -

InteractNet [28] ResNet-50 40.0 48.0
iCAN [12] ResNet-50 45.3 52.4
VCL [35] ResNet-101 48.3 -

UnionDet [36] ResNet-50 47.5 56.2
IPNet [7] Hourglass-104 51.0 -
DRG [37] ResNet-50 51.0 -

VSGNet [11] ResNet-152 51.8 57.0
HOI Transformer [3] ResNet-101 52.9 -

HOTR [4] (transformer method) ResNet-50 55.2 64.4
SGCN4HOI ResNet-152 53.1 57.9

Table II shows the comparison results with other methods.
We observe that SGCN4HOI achieves an improvement of
1.3% mAP and 0.9% mAP on the backbone VSGNet [11] in
Scenario 1 and Scenario 2 respectively, and it outperforms
all the other non-transformer methods as well. Compared to
transformer-based methods [3], [4], SGCN4HOI has much
lower computational complexity, it also achieves better per-
formance than HOI Transformer [3] in Scenario 1 and there
was no Scenario 2 result reported in [3].

In Table III, we report the per-class performance of our
model and compare it with methods that reported per-class
AP. We can see that SGCN4HOI outperforms other methods
in the majority of classes, particularly in “skateboard-instr”
and “snowboard-instr” classes. We believe that our proposed
skeleton-based object keypoints representation well preserves
such visible objects structures (shown in Figure 5 (a)) which



facilitates HOI detection. Notice that some of the classes
such as “eat-instr” perform badly, and we believe this is
mainly caused by two reasons. First, as claimed in VSGNet
[11], the objects of class “eat-instr” are usually small and
occluded in the images, thus object detectors often fail in
these cases. Second, as shown in Figure 5 (b), in these
occluded cases, either the generated skeleton or keypoints
cannot represent the object structure well due to the various
occlusion configurations and the reliance on the quality of
object segmentation.

TABLE III
PER CLASS MAP COMPARISONS WITH THE EXISTING METHODS IN

SCENARIO 1.

HOI Class InteractNet [28] iCAN [12] VSGNet [11] SGCN4HOI
hold-obj 26.38 29.06 48.27 51.55
sit-instr 19.88 26.04 29.9 29.55

ride-instr 55.23 61.9 70.84 68.9
look-obj 20.2 26.49 42.78 47.56
hit-instr 62.32 74.11 76.08 78.63
hit-obj 43.32 46.13 48.6 50.62
eat-obj 32.37 37.73 38.3 43.63

eat-instr 1.97 8.26 6.3 3.18
jump-instr 45.14 51.45 52.66 55.14
lay-instr 20.99 22.4 21.66 20.86

talk on phone 31.77 52.82 62.23 63.55
carry-obj 33.11 32.02 39.09 38.09
throw-obj 40.44 40.62 45.12 53.09
catch-obj 42.52 47.61 44.84 46.87
cut-instr 22.97 37.18 46.78 47.81
cut-obj 36.4 34.76 36.58 37.64

work on comp 57.26 56.29 64.6 69.11
ski-instr 36.47 41.46 50.59 47.74
surf-instr 65.59 77.15 82.22 82.81

skateboard-instr 75.51 79.35 87.8 89.32
drink-instr 33.81 32.19 54.41 47.99
kick-obj 69.44 66.89 69.85 77.37
read-obj 23.85 30.74 42.83 41.57

snowboard-instr 63.85 74.35 79.9 81.35
Average 40.0 45.3 51.8 53.1

E. Ablation Studies

1) Analysis of the Skeleton Stream: Our overall frame-
work consists of three main streams. To evaluate how our
proposed skeleton stream is affecting the overall perfor-
mance, each component is evaluated. We consider the base
model as the framework without skeleton stream, then the
parts of human skeleton keypoints and object skeleton key-
points are evaluated separately.

Fig. 6. Distribution of the number of object keypoints that are under 30.

The results are shown in Table IV. We can see that
with the addition of object skeleton keypoints individually,
the performance has decreased, while the performance of
the addition of human skeleton keypoints alone increases,
and adding both can further improve the performance. This

demonstrates that the human skeleton is more important
than the object skeleton for HOI detection, and the object
skeleton can boost the performance by working together with
the human skeleton. On the one hand, the human skeleton
structure is unified and its poses are versatile, which provide
more pose cues for action recognition, e.g., the skeleton of
the “sit” action is different from the “lay” action. On the other
hand, the object structures vary and the same object can be
involved in multiple interactions, for example, a “bed” can
be involved in the “sit” and “lay” actions, in this case, it is
hard for classifiers to differentiate such HOIs without human
pose cues.

TABLE IV
COMPONENTS ANALYSIS OF THE SKELETON STREAM.

Components AP#1
role AP#2

role
Visual + Configuration (Base) 50.5 55.1

Visual + Configuration + Skeleton (object) 48.6 54.1
Visual + Configuration + Skeleton (human) 52.3 57.2
Visual + Configuration + Skeleton (both) 53.1 57.9

2) Analysis of Parameter: We analyze the affection of the
number of object keypoints on the performance, that is the
value k of K-means, and the results are shown in Table V.
We can see that with the increase of the number of keypoints,
the model performance improves gradually. We conclude that
when the number of keypoints (e.g., 2 and 4) is too small,
it is not enough to represent object structures, while larger
numbers (e.g., 7 and 9) can represent object structures well.

In order to choose the best K parameter, we visualize the
distribution of the number of object keypoints. For the sake
of clarity and readability, we only show the distribution for
the range of 0 to 30 (Figure 6) as the largest number is a
few thousands. It can be seen that most of the objects have a
number of keypoints around 8 or 9, and we choose 9 in this
work. We do not wish to have a very large number on K,
because we padding zeros for small objects that have limited
points to align with the K value, thereby a large K would
harm the performance due to too many meaningless zeros.

TABLE V
K VALUE ANALYSIS OF OBJECT KEYPOINTS REPRESENTATION.

K value AP#1
role AP#2

role
2 47.5 52.6
4 51.1 56.2
5 51.8 56.8
7 52.3 57.2
9 53.1 57.9

VI. CONCLUSION

In this paper, we have proposed an effective skeleton-
aware graph network SGCN4HOI that models fine-grained
spatial correlations between human skeleton keypoints and
object skeleton keypoints for HOI detection. Our proposed
skeleton-based object keypoints representation method is
able to preserve objects’ sizes and structural information,
which help differentiate objects that share subtle appearances
or have different structures, resulting in better HOI detection
performance. The presented multi-stream framework made
full use of available features including visual features and
spatial configuration features. Additionally, we found that



visual features could be used as attention features to refine
graph features that are learned from the skeleton stream.
Experimental results have shown that SGCN4HOI improves
the performance and outperforms the available pose-based
state of the arts.

In the future, more robust object keypoints representation
can be explored, and the adaptive representation in object
detection such as RepPoint [18] and CFA [20] can be
considered. As discussed in the experimental results, our
approach to object keypoints representation is limited by the
quality of object segmentation, thereby it performs badly in
occluded scenes. We hope our work can be helpful for future
explorations on object keypoints representation.
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