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ABSTRACT
The complexity of real-world problems requires modern software
systems to autonomously adapt and modify their behaviour at run
time to deal with internal and external challenges and contexts.
Consequently, these self-adaptive systems (SAS) can show unex-
pected and surprising behaviours to users, who may not understand
or agree with them. This is exacerbated due to the ubiquity and
complexity of AI-based systems which are often considered as
“black-boxes”. Users may feel that the decision-making process of
SAS is oblivious to the user’s own decision-making criteria and
priorities. Inevitably, users may mistrust or even avoid using the
system. Furthermore, SAS could benefit from the human involve-
ment in satisfying stakeholders’ requirements. Accordingly, it is
argued that a system should be able to explain its behaviour and
how it has reached its current state. A history-aware, human-in-
the-loop approach to address these issues is presented in this paper.
For this approach, the system should i) offer access and retrieval
of historic data about the past behaviour of the system, ii) track
over time the reasons for its decisions to show and explain them to
the users, and iii) provide capabilities, called effectors, to empower
users by allowing them to steer the decision-making based on the
information provided by i) and ii). This paper looks into enabling a
human-in-the-loop approach into the decision-making of SAS based
on the MAPE-K architecture. We present a feedback layer based
on temporal graph databases (TGDB) that has been added to the
MAPE-K architecture to provide a two-way communication be-
tween the human and the SAS. Collaboration, communication and
trustworthiness between the human and SAS is promoted by the
provision of history-based explanations extracted from the TGDB,
and a set of effectors allow human users to influence the system
based on the received information. The encouraging results of an
application of the approach to a network management case study
and a validation from a SAS expert are shown.
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1 INTRODUCTION
Autonomous, self-organised and self-adaptive systems (SAS) need
to monitor their environmental context using sensors to dynam-
ically adapt to changes in the highly volatile and heterogeneous
environments that characterise them [13, 37]. The inherent com-
plexity of SAS makes them difficult to be understood by their users
and stakeholders in general [31]. The issue is of significant im-
portance, since users who cannot understand or feel part of the
decision-making process may mistrust the system or simply stop
using it [48]. The complexity is exacerbated with the use of arti-
ficial intelligence (AI) and machine learning (ML) [44]. Weyns et
al. in [54] stated that the absence of human understanding might
be one of the causes for the lack of widespread adoption of SAS.
It is essential to improve the trust and understanding between the
user and the system [33], to enhance collaboration, and to pro-
mote confidence [31]. Explaining the decision-making processes
becomes increasingly important to enhance collaboration, and to
increment confidence [33]. This is ratified by the General Data
Protection Regulation (GDPR) law, which enshrines the right to
explanation [11].

On the other hand, one popular architecture for building SAS is
the MAPE-K loop proposed by IBM [30], which consists of four key
stages; Monitoring, Analysing, Planning, and Executing around a
Knowledge base. Traditionally, MAPE-K considers humans as exter-
nal entities to the decision-making process. Integrating humans in
this enclosed loop is an ongoing research challenge as these systems
are in principle foreseen to be autonomous [13]. However, fully au-
tonomous systems are sometimes infeasible due to the complexity
of real-world problems [1], the presence of potentially dangerous
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outcomes, or discrepancies between the system and user prefer-
ences [46]. Further, the decision making could benefit from expert
human guidance [1]. Lately, researchers have started to consider
the ethical reasons associated with leaving the human out of the
MAPE loop in SAS [16].

It is discussed that the human role in the decision-making loop of
a SAS can be seen as either passive (i.e. observing and understanding
the decision-making process) or active (i.e. steering the decision-
making process). Ideally, the decision-making should take into
account the execution history [17]. Moreover, the understanding
of the decision making by stakeholders should also include the
system’s reasoning history [25]. Therefore, a SAS should (i) offer
access and retrieval to historic data about its behaviour, (ii) track
over the time the reasons for its decisions so they can be used to
explain and further inform end users and other stakeholders, and
(iii) if an active role by the user is required, the SAS should also
provide effectors to therefore empower human stakeholders to steer
the decision-making while being informed by (i) and (ii). Examples
of these stakeholders are developers and operators.

Previous work on history-aware explanations has focused on the
analysis of decision-making over time with no active role played
by the human. For example [25] offered forensic explanations. In
contrast, [17] provide what can be called on-line explanations of
the decision making for monitoring purposes. This paper addresses
the third stage proposed in [40], using history-aware explanations
to enable a human-in-the-loop approach where users take an active
role in the decision-making of the SAS. The approach extends the
MAPE-K loop to support both explanations and user interaction. A
middleware layer based on temporal graph databases (TGDB), the
Explanatory and Feedback layer, allows users to access and query
the historic data, and contains effectors that allow users to steer
the system’s decision-making if they consider it necessary. The
argument is that by engaging users and other stakeholders in the
decision-making, their trust and understanding of the adaptive
behaviour should improve [48]. The middleware architecture and
components are presented and then applied to a network manage-
ment case study. The validation was performed by a SAS expert
who was able to extract explanations based on the system’ historical
behaviour and was able to steer the decision-making, if considered
necessary, through the set of effectors available.

The rest of the document is structured as follows. Section 2
presents the foundations that underlie the research. Section 3 illus-
trates the approach to enable history-aware, human-in-the-loop
self-adaptive systems. Section 4 describes the case study. Section 5
compares this work with other similar ones. Finally, Section 6
presents the conclusions and future work.

2 BACKGROUND
2.1 Self-awareness and History-awareness in

Self-adaptation
Self-awareness capabilities allow the system to access knowledge
related to its own state and the environment, supporting a better
understanding and reasoning of its own adaptive behaviour [8, 12].
Self-awareness can also be related to different specific capabili-
ties such as goal-awareness [50], requirements-awareness [48] or
time-awareness [5]. Specifically, time-awareness refers to the use of

knowledge of historical but also future phenomena [5] for systems’
reasoning. It is argued that time-awareness requires node-level
memory, and capabilities for time series modelling and/or anticipa-
tion [45]. History-awareness is implied in time-awareness.

Existing work on self-awareness tends to leave history implicit
in the formal model [12]. As claimed in [17], explicit representation
of history provides a more transparent consideration of the perfor-
mance of past actions in the decision process. Making the history
implicit in the model also means leaving the storage and retrieval
of this past history as an ad hoc effort, which changes from SAS to
SAS [17]. In some cases, past history is “compressed” so much that
it is unrecoverable: the user cannot see what the system has based
its decisions upon.

In regard to accessing explicit representations of history to sup-
port reasoning and understandability, the authors of [48] argue
that a SAS needs to garner confidence in its users by explaining
its behaviour during execution. Developers also need explanations
to avoid “surprises” during testing and maintenance [53]. The full
potential of techniques based on AI and evolutionary computing
may not be realised without explanation capabilities [3].

2.2 Explanations in Self-adaptive Systems
Explanations provide a key capability to shape the understand-
ing that humans develop when observing the environment, espe-
cially when their perceptions diverge from their expectations [14].
Explanation-aware computing has received growing interest due
to the ubiquity and complexity of AI-based systems, creating the
notion of explainable AI (XAI) [27]. There are different arguments
in favor of XAI. Adadi et. al. stated four main ones in [2]:

• Explain to justify: AI is involved in more and more areas of
our everyday lives. People affected by AI-influenced deci-
sions (e.g. when refused a loan) may demand a justification
for the particular outcome. This transparency can justify a
system’s reasoning to ensure fair and ethical decisions [51]
are being made.

• Explain to control: Explanations can often be used to keep
agent actions inside an envelope of good behaviour. The
explanations allow to discover the origin of a problem or to
clarify misunderstandings between the system and the user
[4]. Indeed, explanations can contribute to prompt identifi-
cation of errors in non-critical situations [2].

• Explain to discover: AI systems can process large amounts
of data that otherwise would be difficult for humans to pro-
cess. Explanations are helpful to extract insights about the
knowledge acquired by this processing [2].

• Explain to improve: In order to improve an AI system, it is
key to discover its flaws. A system that can be explained
and understood can be easier to enhance and use to the best
advantage [47].

In SAS, explainability can be described as the capability of an-
swering questions about the system’s past, present and future be-
haviours. The answers to these questions can explain why a de-
cision was made or a particular state was reached [17]. Systems
able to explain their decisions, concepts, and information sources
to users can demonstrate their trustworthiness and support users’
understanding [44]. Understanding what the system did requires
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tracking its decision history and explaining those decisions (either
textually or graphically [4]) to the users coherently, which is part
of the present work. We focus on explanations to control and expla-
nations to improve for developers and knowledgeable users. These
two groups of users are familiar with developing and/or using SAS
and are, hence, interested in understanding, diagnosing, as well as
refining such systems in a given application context [34].

2.3 Storage and Retrieval of Historic Data
Identifying historical patterns in the data produced by a system
has been a topic of interest for a long time. A 2012 survey on time-
series mining by Esling et al. [20] outlines more than two decades
of research work on this topic. Typical tasks include finding time-
points of interest, clustering similar regions, classifying time-points,
finding anomalies or predicting future time-points.

In regard to industrial applications, the need to organise the large
volumes of data generated by the Web and the Internet of Things
has motivated the development of better time-series analysis ca-
pabilities in database technologies. For instance, the Elasticsearch
search engine can index large document collections with numer-
ical measurements over time, and then apply machine learning
approaches to find anomalies [18]. Moreover, on healthcare context,
the temporal history of some hospitalized patient can be described
by the time series of the values of his/her temperature, blood pres-
sure, and oxygenation [49].

Still, these time-series have the limitation that they simply track
the evolution of a metric: they cannot track, for instance, the evolu-
tion of the relationships within a system. They cannot directly rep-
resent the relationships between multiple evolving metrics, either.
Graph databases such as Neo4j [42] do a good job at tracking com-
plex networks of relationships between many entities (e.g. social
graphs). However, on the other hand, they do not model explicitly
the time dimension.

The above has motivated the development of temporal graph
databases (TGDBs), which can track the evolution of a labelled
attributed graph (where both nodes and edges can have collections
of arbitrary key-value pairs). One implementation of this approach
is Greycat [28] which uses a copy-on-write approach to efficiently
represent a graph which evolves over a timeline of instants, by only
storing the changed nodes at each instant. The timeline may also
branch off into parallel worlds, where one world may reflect the
actual measurements, and the rest may reflect what-if scenarios
derived from simulations. In the present work, by using TGDBs, it
is possible to track the evolution of certain metrics at each node, as
well as the changes in the relationships of the various entities in
the system, or their appearance and disappearance.

2.4 Human-in-the-loop: Implications
Human-in-the-loop feedback control systems offer exciting oppor-
tunities to a broad range of cyber-physical system applications
including energy management, healthcare and automobile sys-
tems [36]. For example, explicitly introducing human-in-the-loop
models for autonomous driving could improve safety [36]. Nunes
et al. in [38] presented a taxonomy of human-in-the-loop applica-
tions (Fig. 1). The authors outline several cases for human-machine
interaction: (i) systems manually controlled by users, (ii) systems

Figure 1: Taxonomy of human-in-the-loop applications [38]

that make decisions while monitored by humans, and (iii) hybrids
of (i) and (ii). The present approach belongs to the hybrid category,
i.e. the human is part of the system’s context, but can also either
supervise and/or influence it.

Although having humans in the loop has its advantages, mod-
elling human behaviours can be challenging due to complex physio-
logical, psychological and behavioural aspects of human beings [36].
There have been different initiatives to study human collabora-
tion in the context of SAS [9, 26, 32]. One common approach to
involve humans in self-adaptation is the Opportunity-Willingness-
Capability (OWC) model [19]. This is a modelling approach used
to quantify how much a participant who is performing a given
task can affect systems. In this context, Opportunity describes the
prerequisites to attempt a task (i.e Does the participant have access
to the system?).Willingness captures the factors that could affect
the intention of a human to attempt a task (i.e. motivation, mood).
Capability describes the feasibility of a human to perform the task
accurately (i.e. level of training for the task). To achieve an accept-
able human-in-the-loop collaboration, the human must achieve
states for which the OWC model can be evaluated as true [26]. The
true state values selected for our OWC implementation are depicted
in Section 4.

3 PROPOSAL: EXPLANATORY AND
FEEDBACK LAYER

This paper targets the level 3 of the staged roadmap for history-
awareness in SAS proposed in [40], considering the human as an
external entity able to steer the system’ decision-making actively.
While monitoring a SAS, the user may not completely approve the
system’s current behaviour. The user may even disagree with the
history-based explanations given by the running system. Allowing
users to take part in the decision-making may increase their level
of confidence in the system. However, achieving this may prove to
be demanding as the explanations will need to be adequate and con-
cise. Additionally, new agreements between the running systems
and human should be allowed. For example, a SAS may allow or
encourage users to change their preferences at runtime depending
on unknown rewards that the SAS may uncover during runtime,
and which were not foreseen before. Situations like those would
create a loop between the system, its explanations, and the ensuing
feedback from the user. Based on the above, this paper proposes
to extend the original MAPE-K architecture by introducing an ex-
planatory feedback layer to enable human-in-the-loop capabilities
in a SAS. A two-way communication between the human and the
system should be available, based on compliance with the OWC
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Figure 2: Explanatory and feedback layer extension toMAPE-
K to enable Human-in-the-loop.

model described in Section 2.4. This layer introduces three new
components to the MAPE-K architecture, as shown in Figure 2 and
are described next.

3.1 Filter Component
This component receives and processes the data coming from the
system. Data can come from the Monitor, Analyse or Plan stages
of the MAPE-K loop. In order to build an explanation, Monitor can
provide raw information about sensor readings and/or data that the
system is collecting. Analyse can feed the filter with the information
that is currently being used by the system for making decisions, and
Plan can inform the user about the system’s intentions for decision-
making. Initially, it will be the developer who defines the focus of
interest, i.e. the subset of the data that will feed the filter component
and produce the explanations. However, the ultimate goal is that
users will define the object of interest based on their own needs.
This filter component is made-up by a temporal graph database
(TGDB) built with information provided by the system in the form
of a log. This log is reshaped to conform with the trace-metamodel
presented in the authors’ previous work in [39, 40]. The model
represents relationships between the elements within a system.
The trace-metamodel links the system’ goals and decisions to its
observations and reasoning. It has been updated from [40] to include
the concept of 𝐴𝑔𝑒𝑛𝑡 to keep track if decisions and observations
are performed by the system or the human for accountability. The
information is stored in the TGDB creating a new snapshot at the
current point in time: all relevant versions are kept. We use a model
indexer to automatically compare the trace-model as an object
graph against the current version of the temporal graph. It creates a
new version which only updates the temporal graph where needed,
for efficient storage.

3.2 Explain Component
This component is where the explanations are constructed and pre-
sented. The final shape of a satisfying explanation partly depends
on the understanding shown by the human recipient. Therefore,
a rigid system for which developers or domain experts have de-
fined explanations with no awareness of the needs and expectations
of the recipients may be not convenient for users with different
backgrounds. Allowing the user to have access to the system’s be-
havioural history and request specific explanations would help to
complete their mental model or test hypotheses over system be-
haviour. The explain component can run a query on the TGDB using
the time-aware query language presented in [23], an extension of
the Epsilon Object Language (EOL) to define temporal patterns that
traverse the history of a model. The result of this query contains
the information that will be used to construct the explanations.
These explanations could be presented in textual or graphical ways,
e.g. plots of various kinds, yes/no answers, or specific examples of
matches of a certain temporal pattern. In relation to the explanation
phases defined by Anjomshoae et al. [4], this work tackles the first
two: i) the explanation generation is the construction of the causally
connected TGDB (performed on the previous component), and ii)
the explanation communication is the extraction of the informa-
tion using the temporal query language (what information will be
provided) and the presentation of explanations either textually or
graphically (how will it be presented).

3.3 Feedback Component
The feedback component allows users to make changes in the
system through a set of effectors if they consider it necessary. At
the Plan stage of the MAPE-K architecture, a human could influence
the high-level goals of the system by guiding the system and their
priorities, or the internal parameters governing their algorithm:
in both cases, the users would need an appropriately abstracted
explanation to allow them to make an informed decision about the
relevance and impact of the intended changes. At the Execute stage,
effectors could allow users to explicitly select certain actions; for
example, on an autonomous car the user could decide to go in a
specific direction that goes against the system’s reasoning. In this
case the system may need to reconfigure its decision-making to
meet a new preference introduced by a user. The full functionality
of the effectors will be only available when the OWC model is
evaluated as true which is introduced as part of the Knowledge in
the MAPE-K loop.

4 CASE STUDY
4.1 RDM: Remote Data Mirroring
This section will evaluate the approach through a case study on the
Remote Data Mirroring (RDM) SAS [7, 29], which uses Bayesian
Learning an AI approach [24]. RDM manages data servers and net-
work links, and it aims to protect from data loss by replicating data
across servers. Its overall structure is shown in Figure 3. Uncer-
tainty exists due to different unexpected situations such as delayed
or lost messages, noise in sensors, or network link failures. RDM
self-adapts to these situations by reconfiguring itself. Specifically,
RDM can use two topologies: Minimum Spanning Tree (MST),
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Figure 3: RDM SAS - case study

and Redundant Topology (RT). Both topologies provide their
own levels of reliability, performance and cost which are taken
into account while estimating the observed levels of satisfaction of
the non-functional requirements (NFRs): Minimization of Cost
(MC), Maximization of Reliability (MR), and Maximization
of Performance (MP). MST is more efficient in terms of energy
consumption and performance, whereas RT is more reliable.

The RDM SAS has been configured with Service Level Agree-
ments (SLAs) for the satisfaction levels of the NFRs. The identified
SLAs were: P(MC=True) ≥ 0.8 (the observed level of satisfaction of
MC is greater than or equal to 0.8 out of 1), P(MR=True) ≥ 0.9, and
P(MP=True) ≥ 0.75 respectively. Initial stakeholders’ preferences
about the NFRs and adaptation topologies have also been provided.
They are represented by the Reward/Penalty node shown in Fig.
3. In RDM, the initial preferences provided by the domain experts
favour the MST topology under stable conditions [24]. Stable con-
ditions represent a system context where the average (since the
system started the execution) satisfaction levels of the NFRs meet
their SLAs. In this work, we will showcase how a user can take a
more active role in the decision-making based on history-aware
explanations provided by the RDM SAS under unexpected contexts
(i.e. unstable conditions) detected at runtime.

4.2 Enabling History-aware Human-in-the-loop
in RDM

As mentioned in Section 2.2, the history-aware explanations in this
case study targeted RDM SAS developers or operators as SAS users.
The user interacts with the RDM under ideal conditions. Ideal refers
to the fact that the SAS developer fulfils the requirements of the
OWC model [19], for achieving effective human-machine interac-
tion. Table 1 shows the selected values for each OWC element under
the ideal conditions identified for this experiment. Accordingly, we
can state that the SAS developer: (i) has access to the RDM SAS, (ii)
is willing to interact with it and (iii) has the capacity to perform an
action in an effective way.

• Opportunity:
– ℎ𝑢𝑚𝑎𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛 ∈ { system monitoring (SM), break
(B), out of work (OW ) }

– ℎ𝑢𝑚𝑎𝑛.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ { workstation (W ), meeting room (MR),
using personal computer (PC) }

– ℎ𝑢𝑚𝑎𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ∈ {available (A), not available (NA)}
• Willingness:
– ℎ𝑢𝑚𝑎𝑛.𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 ∈ { high (H ), medium (M), low (L)}
– ℎ𝑢𝑚𝑎𝑛.𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 ∈ { high (H ), medium (M), low (L)}
– ℎ𝑢𝑚𝑎𝑛.𝑠𝑡𝑟𝑒𝑠𝑠𝐿𝑒𝑣𝑒𝑙 ∈ { high (H ), medium (M), low (L) }
– ℎ𝑢𝑚𝑎𝑛.𝑠𝑡𝑎𝑚𝑖𝑛𝑎 ∈ { high (H ), medium (M), low (L) }

• Capacity:
– ℎ𝑢𝑚𝑎𝑛.𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 ∈ { high (H ), medium (M), low (L)}
– ℎ𝑢𝑚𝑎𝑛.𝑠𝑢𝑝𝑝𝑜𝑟𝑡 ∈ { available (A), not available (NA) }

Dimension Element Value True Value

Opportunity
ℎ.𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐴𝑐𝑡𝑖𝑜𝑛 𝑆𝑀 𝑇

ℎ.𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑊 𝑇

ℎ.𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝐴𝑐𝑐𝑒𝑠𝑠 𝐴 𝑇

Willingness

ℎ.𝑐𝑜𝑛𝑓 𝑖𝑑𝑒𝑛𝑐𝑒 𝐻 𝑇

ℎ.𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝐻 𝑇

ℎ.𝑠𝑡𝑟𝑒𝑠𝑠𝐿𝑒𝑣𝑒𝑙 𝐿 𝑇

ℎ.𝑠𝑡𝑎𝑚𝑖𝑛𝑎 𝐻 𝑇

Capability ℎ.𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝐻 𝑇

ℎ.𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝐴 𝑇

Table 1: OWC model for RDM (ideal)

Regarding to the system, RDM SAS is extended with human-in-
the-loop capabilities and a graphical user interface (GUI) for the
interaction. Specifically, the components of the explanatory and
feedback layer presented in section 3 are integrated to the RDM
SAS as follows:
Filter component: to store the history of execution, a TGDB is
employed. The filter component records data of the execution of
the system and allows for flexible querying when analyzing the
evolution of the system. In this experiment, the information is
filtered for meeting the RDM developer explanations’ requirements
about:

• initial stakeholder preferences about the NFRs and SLAs for
each one.

• adaptation strategies selected by the SAS (based on the stake-
holder preferences) and their impact on the satisfaction levels
of the NFRs.

• situations detected at runtime, where initial stakeholder pref-
erencesmay drive the SAS to unsuitable adaptation strategies
and thus to a negative impact on the satisfaction levels of
the NFRs.

Explain component: after the relevant information is available,
the explanations are constructed, either textually or graphically.
Both would allow the developer to understand the system’s be-
haviour. In the RDM case study, for each time slice during execution,
a GUI is updated with information from the TGDB maintained by
an Eclipse Hawk model indexing server [22]. Specifically, relevant
history-aware explanations related to the current satisfaction levels
of NFRs, adaptation topologies and SLAs are presented (Fig. 5). The
implemented temporal query can be found in Listing 1.
Feedback component: users consume the explanations and can
improve their mental model about the system’s current behaviour.
If system behaviour does not agree with the mental model of the
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var r e s u l t : Sequence ;

var n f r s = NFRBe l i e f . l a t e s t . a l l ;
va r dec=Dec i s i on . l a t e s t . a l l . f i r s t ;
var b l f s =dec . n f r B e l i e f s P r e ;

var mecb l f s = b l f s . f i r s t . v e r s i o n s ;
var mrb l f s = b l f s . second . v e r s i o n s ;
var mpb l f s = b l f s . t h i r d . v e r s i o n s ;

var aveMEC=mecb l f s . c o l l e c t ( b | b .
e s t i m a t e d P r o b a b i l i t y ) . ave rage ( ) ;

var aveMR=mrb l f s . c o l l e c t ( b | b .
e s t i m a t e d P r o b a b i l i t y ) . ave rage ( ) ;

var aveMP=mpbl f s . c o l l e c t ( b | b .
e s t i m a t e d P r o b a b i l i t y ) . ave rage ( ) ;

f o r ( n f r in n f r s ) {
var currentNFR = n f r . l a t e s t ;
r e s u l t . add ( Sequence {

currentNFR . eCon t a ine r . eCon t a ine r .
t im e s l i c e ID ,

currentNFR . n f r . name ,
currentNFR . s a t i s f i e d ,
currentNFR . e s t im a t e d P r o b a b i l i t y ,
currentNFR . eCon t a ine r . a c t i onTaken . name

,
aveMEC , aveMR , aveMP
} ) ;

}
r e t u r n r e s u l t ;
o p e r a t i o n Sequence ave rage ( ) {

r e t u r n s e l f . sum ( ) / s e l f . s i z e ( ) ;
}

Listing 1: EOL query to find NFRs, NFR averages, SLAs and
topologies in RDM based on the trace-metamodel structure
for each instant of time.

developer, changes can be requested. Since the decision-making in
the RDM is driven by the satisfaction levels of the NFRs, the effectors
exposed by the system (the buttons “+” and “-” shown in Fig. 5) will
allow the developer to manipulate the system’s preferences (in this
case, the relative priorities or weights of the NFRs).

The sequence diagram in Fig. 4 shows the communication be-
tween the various components for level 3 (human-guided history-
aware decision-making with explanation capabilities) of the RDM
case study. The user initializes the simulation and the GUI assuming
that the model indexer Hawk is running, the trace metamodel is
registered and the log file to be indexed is defined. At the end of
each timesclice, the system will update the log file with the corre-
sponding information. The GUI is fed by the temporal graph that is
being build in Hawk (filter component). At any point in time, the
user can run a query based on the current state of the temporal
graph in order to obtain an explanation about how it got there
(explanation component). If the user determines that the system
is not fulfilling the user’s preferences or that an external action
could improve the system performance, reconfiguration can be
made using the effectors/controls in the GUI (feedback component).

Figure 4: UML sequence diagram for interaction between
components (RDM case study)

A reconfiguration in the system will be made if the OWC model is
evaluated as true, otherwise the system should generate a warning
message.

4.3 Evaluation and Discussion of Results
The experiments were conducted on a Lenovo Thinkpad T480 with
an Intel i7-8550U CPU with 1.80GHz, running Ubuntu 18.04.2 LTS,
Oracle Java version 1.8.0_201 and 15.6GB RAM. For the experiment,
a simulation of the RDM SAS was run over 1000 time slices.

4.3.1 Experimental evaluation. The information provided by the
filter component can be used to generate visual explanations such
as those in Figure 5, which summarise the behaviour of the RDM
SAS as it runs. It is observed that initially, the satisfaction levels
of the NFRs Minimization of Cost (MC), Maximization of
Reliability (MR), and Maximization of Performance (MP)
are in general over their Service Level Agreements (SLAs), with
some values below their thresholds, but this noise is considered to
be normal for the system. Later, from time slice 324 (See Fig 5, Max-
imization of Reliability), a period of consecutive and unexpected
data packet losses while using the MST topology reduces the ob-
served reliability of the system. Data packet loss may represent
link failures in a RDM, which can be caused by problems with the
equipment (e.g. failures in a switch or router, or power failures [29]).
Despite the new detected conditions and based on the initial RDM
configuration, the selected topology continues to be MST (See Fig.
5, Maximization of Reliability: time slice 324). Specifically, under
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Figure 5: GUI showing the system’s historical behavior. At time slice 646, the user set a higher priority to the MR NFR (left chart).

the current context, initial stakeholder preferences are not suitable
anymore as they continue favouring the use of a topology that does
not contribute to improve the satisfaction level of MR, which is
mainly under its tolerance threshold (See Fig. 5, Maximization of
Reliability: time slices 324 - 646). The preferences should be even-
tually reassessed and updated to assign higher importance to NFRs
with poor satisfaction levels (e.g. MR, the reliability of the system)
and to improve the selection of the topology in the RDM SAS.

Complementing the scenario presented above, through the inte-
gration of the human-in-the-loop based on the RDM components of
the explanatory feedback layer the developer is able to explore the
history and steer the decision-making. History-aware explanations
are presented to the SAS developer through the GUI. Under the
current runtime context, special attention is paid to: (i) the NFRs
satisfaction levels from time slice 324 onwards, (ii) the current pre-
ferred topology (MST), and (iii) the current preferences about the
NFRs. These explanations help the developer refine their “hypothe-
ses” or mental models about the current state of the system.

Next, based on the information provided by the explanation
component, the user is allowed to potentially improve the current
behaviour of the system. If the user considers that the system is
not fulfilling the intended behaviour or that an external action
could improve its performance, a reconfiguration can be made
using the effectors/controls in the GUI (feedback component). In
order to reconfirm the external action selected by the user, Fig. 6
shows a pre-adaptation explanation of how relevant the effector
“increase the priority of MR” can be. After the change is applied,
Fig. 5 shows how the satisfaction level of MR increases from time

slice 646 onward as a result. The satisfaction levels of MC and MP
went down, but they still met their SLAs.

4.3.2 Discussion. The experiment has covered how some unfore-
seen dynamic contexts may affect negatively the NFR satisfaction
levels when initial assumptions, e.g. stakeholder preferences, are
not updated in response. The “NFRs without update of preferences”
series in Fig. 7 shows this behaviour in the satisfaction levels of the
NFRs from time slice 324 to time slice 646. The average satisfaction
level of MR is always below the SLA given in the initial stakeholder
preferences, despite the new detected context, and the RDM SAS
continues favouring the MST topology as shown in Fig. 5. In con-
trast, by including the human-in-the-loop in the decision-making
of the RDM SAS, it is possible to improve the general performance
of the system and the NFR trade-offs. Going back to Fig. 7, “NFRs
with update of preferences” shows this new behaviour from time
slice 646 onward. It can be seen that after the user intervened the
average satisfaction level of MR started meeting its SLA. There is
also a slight reduction on the satisfaction levels of MC and MP, but
they still meet their SLAs.

Through this experiment, we have shown how external entities
(e.g. human stakeholders) are able to evaluate and update the pa-
rameters of a SAS based on live explanations of the SAS behaviour,
participating in the tradeoffs between the NFRs in a SAS. Currently
we have focused on explanations based on the evolution of a metric
(eg. NFR average). However, explanations based on relationships
between metrics and events spanned over the time can be obtained
by exploiting the full potential of the causally connected TGDB



MODELS ’22 Companion, October 23–28, 2022, Montreal, QC, Canada Juan Parra-Ullauri, Antonio García-Domínguez, Nelly Bencomo, and Luis Garcia-Paucar

Figure 6: Textual pre-adaptation explanation from the system at time slice 646, when user shows interest in increasing priority
of MR.

Before update of 
preferences

After update of 
preferences

Figure 7: NFRs average satisfaction levels before and after
human interaction

as shown in [40]. For example, the causes of the packet loss in
the case study can be tracked. Future experiments will focus on
these types of explanations. Additionally, further studies on the
impact of human interventions conflicting with the perspectives or
requirements of the SAS are required.

Regarding to the explanations stages mentioned in section 3, the
present work has tackled the first two, explanation construction
and communication. The third stage, explanation reception, has
been assumed as ideal for the SAS developer based on the compli-
ance of the OWC model. Under these assumptions, an explanation
is deemed to be useful if the recipient understands the system’s
behaviour and feels confident to interact with it either passively
or actively. However, the evaluation of the explanations reception
and the impact of human interaction in SAS performance while
considering different levels of user expertise outside of ideal OWC
conditions, is still required. Furthermore, the study of explanations
for non-expert stakeholders (e.g., novice users) is necessary.

5 RELATEDWORK
Related work is categorised as human-in-the-loop for decision mak-
ing systems, and explanations for autonomous systems.

5.1 Human-in-the-loop in Autonomous Systems
In [41], the authors propose a cooperative human-machine ap-
proach for continuous planning in self-adaptive systems. The work
focuses on how the information from the real world (i.e. with un-
structured data) is inserted into the system, and how it is subse-
quently integrated into planning. In [1], an approach for making
autonomous systems benefit from human expertise is presented,
using human guidance during the learning process of a Reinforce-
ment Learning agent. The authors of [10] also study the pros and
cons of involving humans in the adaptation loop. They propose
a framework to reason about humans in a self-adaptation loop as
system-level effectors during the execution adaptation stage. These
approaches focus on how humans affect system decision-making
and learning. Different from this paper, they do not consider human
preferences or trust as in our case.

The work in [21], as in this paper, focuses on user preferences,
proposing the MUSIC middleware for user participation. The aim is
providing user control and trust while still maintaining adaptivity.
However, different from the present work, it does not target the
user’s understanding of the behaviour of the system, and it does
not take into account how the information is being perceived by
the users, as it is done through the history-aware explanations in
the present paper.

5.2 Explanations for Autonomous and
Self-adaptive Systems

There are also emerging research initiatives related to explanations
in self-adaptive systems to tackle the challenges posed by the use of
AI and ML. In [6], the authors propose an architecture for building
self-explainable systems. As in the case of the present paper, their
MAB-Ex loop is a framework that can extend the SAS MAPE-K
loop in order to support explanations.

Mouline et al. [35] also presented a temporal model to support
interactive diagnosis of self-adaptive systems. The temporal model
represents, stores and queries decisions, considering their context,
requirements, and adaptation actions. However, these works lack
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a feedback component to allow users to interact with the system
based on the provided explanations.

Li et al. [32] propose explanations for human-in-the-loop as in
this paper. Their target is to define when an explanation should
be provided as a tactic of the SAS to support human interaction.
However, their work does not focus on how explanations are built,
which the present work supports through trace metamodels, tem-
poral graphs, and a temporal query language. Further, they do not
explicitly take into account the historical behaviour of the self-
adaptive system, which is an advantage provided by the use of
temporal graphs.

6 CONCLUDING REMARKS AND FUTURE
WORK

This paper has proposed introducing human-in-the-loop capabili-
ties into the MAPE-K architecture by adding an explanatory and
feedback layer based on historical data. The proposed extension cor-
respondswith the hybrid category of the taxonomy fromNunes [38],
where the human is part of the system’ context and can also interact
with it. The definition, implementation and evaluation of the pro-
posed extension are shown through a case study on an existing SAS
that uses Bayesian Learning. The approach shown is human-centric,
targeting trustworthiness with a two-way collaboration between
the human and the SAS. The SAS provides the user with effectors
to steer the decision-making: the effectors abstract away the details
of the underlying decision algorithm from the user. These effectors
for the interaction are available if the OWC model is evaluated as
true. Through the feedback and explanatory layer, users can query
the history of the system to improve their understanding about the
behaviour exposed by the SAS. The impact of the user’s decisions
was examined using data collected from the same interface, with the
ability to compare system performance pre- and post-adaptation.
These human interactions are annotated in the history and tracked
in the temporal graph for accountability.

The evaluation was performed by members of our team who
are the developers of the RDM SAS and who focus on improving
it. The type of explanations presented, either textual or graphical,
fit the audience, who are able to understand the data represen-
tations and can extract knowledge from their system. However,
this evaluation can represent a source of threats to validity. There-
fore, additional evaluations are part of the immediate future work.
We plan to test the approach to evaluate the user perceptions us-
ing some well-known techniques for software acceptance as the
Technology Acceptance Model (TAM) [15] and its variants [52].
TAMwill be used to evaluate the ease-of-use perception, usefulness
perception and intention to use in the future of the proposed frame-
work. Additionally, specific techniques to evaluate XAI as the one
recently proposed by Rosenfeld, A., in [43] will be also explored.
This work presents a methodology for evaluating XAI that focuses
on metrics that quantify the appropriateness of the explanations
provided given a specific goal. Additionally, as defined in the OWC
model, the performance of humans in the decision making can
vary according to various factors (e.g. training, workload, or stress
levels): further investigation is needed on this topic as well.

There are other lines of work beyond these major ones. From
the technical point of view, the explanations provided so far were

mostly factual. However, explanations can be about proving or
disproving hypotheses from the user, or presenting simplified pre-
dictors of the system behaviour. The development of these new
types of explanations is another interesting line of further research.
On the other hand, the current implementation is designed to be
used in a central control node for a SAS. It would require further
efforts to be applied to the case of a distributed SAS. Finally, the
approach should be validated by using additional case studies, to
measure how it improves explainability in a wider domain.
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