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Abstract. The networks-based study of financial systems has received consid-
erable attention in recent years, but seldom explicitly incorporated the dynamic
aspects of such systems. We consider this problem setting from the temporal
point of view, and we introduce the Interval Debt Model (IDM) and some
scheduling problems based on it, namely: Bankruptcy Minimization / Max-
imization, in which the aim is to produce a schedule with at most / at least
k bankruptcies; Perfect Scheduling, the special case of the minimization
variant where k=0; and Bailout Minimization, in which a financial authority
must allocate a smallest possible bailout package to enable a perfect schedule.
In this paper we investigate the complexity landscape of the various variants
of these problems. We show that each of them is NP-complete, in many cases
even on very restrictive input instances. On the positive side, we provide for
Perfect Scheduling a polynomial-time algorithm on (rooted) out-trees. In
wide contrast, we prove that this problem is NP-complete on directed acyclic
graphs (DAGs), as well as on instances with a constant number of nodes (and
hence also constant treewidth). When the problem definition is relaxed to
allow fractional payments, we show by a linear programming argument that
Bailout Minimization can be solved in polynomial time.

Keywords: temporal graph · financial network · payment scheduling · NP-
complete · polynomial-time algorithm

1 Introduction

In the study of financial systems, network-based paradigms were introduced to model
behaviors associated with the connectedness and complexity exhibited in real-world
financial systems. We introduce the Interval Debt Model, focusing on the choices that
real-world financial entities have in times at which they pay their debts by applying
temporal graphs to this setting. Previous work in the study of financial networks had
seldom explicitly incorporated the temporal aspects inherent to real-world debt.
Financial Networks have been studied by applying concepts from ecology [9], sta-
tistical physics [3], and Boolean networks [6]. In 2001, Eisenberg and Noe (EN) [7]
introduced a paradigm which has been the basis for much work in the network-based
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analysis of financial systems, see also e.g. the survey [11]. In this model, financial entities
all operate within a single clearing system. The paradigm has been extended to include
default costs [18], Credit Default Swaps (CDSs) (derivatives through which banks can
bet on the default of another bank in the system) [19], and the sequential behavior
of bank defaulting in real-world financial networks [16].

A core motivation of financial network analysis is to inform central banks’ and
regulators’ policies. The concepts of solvency and liquidity are core to this task: a bank
is said to be solvent if it has enough assets (including non-liquid assets) to meet all its
obligations, and is said to be liquid if it has enough liquid assets (e.g. cash) to meet its
obligations on time. An illiquid but solvent bank may exist even in modern interbank
markets [17]. In such cases, a central bank may act as a lender of last resort and
extend loans to such banks to prevent their defaulting on debts [2] [17]. The optimal
allocation of bailouts to a system in order to minimize damage has also been studied as
an extension of Eisenberg and Noe’s model [15]. Here, bailouts refer to funds provided
by a third party (such as the government) to entities to help them avoid bankruptcy.
Temporal Graphs are graphs whose underlying network structure changes over
time. These allow us to model real-world networks which have inherent dynamic
properties, such as transportation networks [20], contact networks in an epidemic [8],
and communication networks; for an overview see [4,5,10]. Most commonly, following
the formulation introduced by Kempe, Kleinberg and Kumar [13], a temporal graph
has a fixed set of vertices, and edges which appear and disappear at integer times up to
an (integer) lifetime T . In such cases the temporal graph can be thought of as a static
graph G=(V, E) in which the edges are labeled with the times at which they appear.
Often, a natural extension of a problem on static graphs to the temporal setting yields a
computationally harder problem; for example, finding node-disjoint paths in a temporal
graph remains NP-complete even when the underlying graph is itself a path [14], and
finding a temporal vertex cover remains NP-complete even on star temporal graphs [1].
Our contribution In this paper we present a new framework for considering problems
of bailout allocation and payment scheduling in financial networks by taking into
account the temporal aspect of debts between financial entities, the Interval Debt
Model (IDM). We introduce several natural problems and problem variants in this
model, and show that the tractability of such problems depends greatly on the network
topology and on the restrictions on payments (i.e. the admission or exclusion of partial
and fractional payments on debts). While previous work has mainly focused on static
financial networks, we go further and introduce the time dimension in financial networks
to account for the temporal nature of real-world debts. In particular, the IDM offers
the capability to represent the flexibility that entities have in paying debts earlier or
later, within some interval. In Section 2 we present our new model IDM in detail. The
formal definitions of our problems, as well as a summary of our results (see Table 1)
are given in Section 2.3. All our results are formally presented in Section 3. Due to
space constraints, some proofs are deferred to more complete versions of this paper.

2 The Interval Debt Model

In this section, we introduce (first by example, then formally) the Interval Debt Model,
a framework in which temporal graphs are used to represent the system of debts in
a financial network.
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As an example, consider a tiny financial network consisting of 3 banks u, v, w, with
e30, e20 and e10 respectively in initial assets, and the following inter-bank financial
obligations. Bank u owes bank v e20, which it must pay by time 3, and e15, which
it must pay between times 4 and 5. Bank v has agreed to lend bank w e25 at time
2 exactly, which bank w must repay to bank v between times 4 and 6. A graphical
representation of this system is shown in Fig. 1.

u
30

v
20

w
10

20@[1,3]

15@[4,5]

25@2

25@[4,6]

Fig. 1: A simple instance of the IDM

Several points can be made about this system: node u is insolvent as its e30 in
assets are insufficient to pay all its debts; node v may be illiquid (it may default on
part of its debt to w, e.g. if u pays all of its first debt at time 3) or may remain liquid
(e.g. if it receives at least e5 from u by time 2); and node w is solvent and certain
to remain liquid in any case.

One may ask several questions about this system: Are partial payments admitted
(i.e. u paying e18 of the e20 debt at time 1, and the rest later)? If so, are non-integer
payments admitted? Can money received be immediately forwarded (e.g. u paying v
e20 at time 2, and v paying w e25 at time 2)?

We now specify in detail the setting we consider in the remainder of the paper.

2.1 Formal Setting

Formally, an Interval Debt Model (IDM) instance is a 3-tuple (G, D, A0), where:
– G=(V,E) is a finite digraph with n nodes (or, alternatively, banks) from V ={vi :

i=1, 2, ..., n} and directed labelled multi-edges (but no loops) from E⊆V ×V ×N,
with the edge (u,v,id)∈E denoting that there is a debt, whose label is id, from
the debtor u to the creditor v; moreover, the labels of some pair (u,v) (appearing
in at least one triple (u,v,id)∈E) form a non-empty contiguous integer sequence
0,1,2,... We refer to the subset of edges directed out of or in to some specific node
v by Eout(v) and Ein(v), respectively.

– D :E→{(a,t1,t2):a,t1,t2∈N\{0},t1≤t2} is the debt function which associates terms
to every debt (ordinarily, we abbreviate D((u,v,n)) as D(u,v,n)). Here, if e is a debt
with terms D(e)=(a,t1,t2) then a is the monetary amount to be paid and t1 (resp. t2)
is the first (resp. last) time at which any portion of this amount can be paid; also, for
any debt e∈E, we write D(e)=(Da(e),Dt1(e),Dt2(e)). For simplicity of notation,
we sometimes denote the terms D(e)=(a,t1,t2) by a@[t1,t2], and a@t1 when t1=t2.

– A0=(e0v1,e
0
v2,...e

0
vn)∈Nn is a tuple with e0vi denoting the initial external assets of

bank vi.
We refer to the greatest timestamp that appears in any debt for a given instance as life-

time. The instance shown in Fig. 1, which has lifetime T =6, is given by: V ={u,v,w},E=
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{(u,v,0),(u,v,1),(v,w,0),(w,v,0)}, D(u,v,0)=(20,1,3), D(u,v,1)=(15,4,5), D(v,w,0)=
(25,2,2), D(w,v,0)=(25,4,6), and A0=(e0u,e

0
v,e

0
w), where e0u=30, e0v=20, and e0w=10.

u
1

v
0

w
0

1@[1,2] 1@[1,1]

Fig. 2: An instance of the IDM with exactly two schedules.

Similarly, the instance shown in Fig. 2 has lifetime T =2 and is given by V ={u,v,w},
E= {(u,v,0),(v,w,0)}, D(u,v,0)= (1,1,2), D(v,w,0)= (1,1,1), and A0 =(e0u,e

0
v,e

0
w),

where e0u=1, e0v=0, e0w=0.

2.2 Schedules

Given an IDM instance (G,D,A0), a schedule describes at what times the banks transfer
assets to one another via payments. Formally, a schedule is a set of |E|∗T payment
values pte≥0, one for each time-edge pair. Equivalently, a schedule can be expressed
as an |E|×T matrix S, and the variables pte are the entries of that matrix. The value
of pte is the monetary amount of the debt e paid at time t. Our intention is that at
any time t∈ [1,T ], every payment pte>0 of a schedule S is paid by the debtor of e to
the creditor of e, not necessarily for the full amount Da(e) but for the amount pte. A
schedule for the instance of Fig. 2 consists of the four payments p1(u,v,0), p

1
(v,w,0), p

2
(u,v,0)

and p2(v,w,0). Note that, using the above representations of a schedule S, we might
have a large number of zero payments. Therefore, for simplicity of presentation, in the
remainder of the paper we specify schedules by only specifying the non-zero payments.
An example schedule for the instance in Fig. 2 is then p1(u,v,0)=1, p1(v,w,0)=1.

We now introduce some auxiliary variables which are not strictly necessary but help
us to concisely express constraints on and properties of schedules (for nodes u,v∈V (G)
and time t∈ [T ]):
– Denote by Itv the total monetary amount of incoming payments of node v at time t.
– Denote by Ot

v the total monetary amount of outgoing payments (expenses) of node
v at time t.

– We write ptu,v to denote the total amount of all payments made from u to v at time
t in reference to all debts from u to v. That is, ptu,v=

∑
ip

t
(u,v,i).

– We denote by etv node v’s external assets at time t. Then etv =et−1
v +Itv−Ot

v for
every v and t.

Note that, whenever there is only one edge from a node u to a node v, we have
ptu,v=pt(u,v,0); we use this in proofs for conciseness where possible. Recall the example
schedule for Fig. 2, which we can then represent as p1u,v=1, p1v,w=1. As we shall see,
the payments in this schedule can be legitimately discharged in order to satisfy the
terms of all debts but in general this need not be the case. In fact, there might be
schedules that are invalid, as well as schedules in which banks default on debts (go
bankrupt). We deal with the notions of validity and bankruptcy now.



Payment Scheduling in the Interval Debt Model 5

Definition 1 (Valid schedule; payable, due, overdue debts). A schedule is valid
if it satisfies the following properties (for any edge e and debt D(e)=(a,t1,t2)):
– All payment variables are nonnegative. That is, pte≥0 for every e and t.
– All asset variables (as derived from payment variables and initial assets) are non-

negative. That is, etv≥0 for every v and t.
– No debts are overpaid. That is,

∑
t∈[t1,T ]p

t
e≤a.

– No debts are paid early.
∑

t∈[0,t1−1]p
t
e=0.

Given some IDM instance and schedule, a debt D(e)=a@[t1,t2] is said to be payable
for the interval [t1,t2−1]. At time t2, D(e) is said to be due. At every time t≥t2, if
the full amount a has not yet been paid with reference to e, then D(e) is said to be
overdue at time t. A debt is active whenever it is payable, due, or overdue.

A bank is said to be withholding if, at some time t, it has an overdue debt and sufficient
assets to pay (part of, where fractional or partial payments (see below) are permitted)
the debt. If any bank is withholding in the schedule, then the schedule is not valid.

Definition 2 (Bankrupt). A bank is said to be bankrupt (at time t) if it is the
debtor of an overdue debt (at time t). We say a schedule has k bankruptcies if k distinct
banks go bankrupt at any point in the schedule. A bank may recover from bankruptcy if
it receives sufficient income to pay off all its overdue debts.

Definition 3 (Insolvent). A bank v is said to be insolvent if all its assets (the sum
of all debts due to v and of v’s initial assets) are insufficient to cover all its obligations
(the sum of all debts v owes). Formally, v is insolvent if

e0v+
∑

e∈Ein(v)

Da(e) <
∑

e∈Eout(v)

Da(e)

A bank which is insolvent will necessarily be bankrupt in any schedule.

We emphasize that the timing of bankruptcy and recovery or not of the banks is
not considered.

We consider three natural variants of the model, in which different natural constraints
are imposed on the payment variables:
– In the Fractional Payments (FP) variant, the payment variables may take rational

values. That is, pte∈Q for every e and t.
– In the Partial Payments (PP) variant, the payment variables may take only

integer values. That is, pte∈N for every e and t, and we allow payments for a smaller
amount than the total debt.

– In the All-or-Nothing (AoN) variant, every payment must fully cover the rel-
evant debt; every payment variable must be for the full amount, or zero. That is,
pte∈{Da(e),0} for every edge e.

For example, the instance of Fig. 2 has the following valid schedules:
– (In all variants) the one above in which p1u,v=p1v,w=1 (all debts are paid in full

at time 1).
– (In all variants) one in which p2u,v=p2v,w=1 (all debts are paid in full at time 2).

Under this schedule, node v is bankrupt at time 1, as e1 of the debt D(v,w,0)
is unpaid and that debt is due.

– (In the FP variant only) for every a∈Q, where 0<a<1, the schedule in which
p1u,v=p1v,w=a and p2u,v=p2v,w=1−a. Under each of these, node v is bankrupt
at time 1, as e1−a of the debt D(v,w,0) is unpaid and that debt is due.
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Instant forwarding and cycles. We emphasize that we allow a bank to instantly
spend income received. Note that in all valid schedules for the instance in Fig. 2 above, v
instantly forwards money received from u to w; the assets of v never exceed 0 in any valid
schedule. This behavior is consistent with the EN model [7] in which financial entities
operate under a single clearing authority. Indeed, in such cases a payment chain of any
length is admitted and the payment takes place in unit time regardless of chain length.
Furthermore, still consistent with the EN model is the possibility of a payment cycle.

u
1

v
1

w
1

x
1

1@[1,2]

1@[1,2]

1@[1,2]

1@[1,2]

(a) Every node starts with e1.

u
1

v
0

w
0

x
0

1@[1,2]

1@[1,2]

1@[1,2]

1@[1,2]

(b) Only u starts with e1.

u
0

v
0

w
0

x
0

1@[1,2]

1@[1,2]

1@[1,2]

1@[1,2]

(c) Every node starts with e0.

Fig. 3: Examples illustrating the behavior of cycles in the IDM.

Fig. 3 shows three cyclic IDM instances, all with lifetime T =2. By our definition of a
valid schedule, the schedule p1u,v=p1v,w=p1w,x=p1x,u=1 is valid in all three instances. In
Fig. 3b we may imagine the e1 moves from node u along the cycle, statisfying every debt
at time 1. This is a useful abstraction, but not strictly accurate - rather, we may imagine
that all 4 banks simultaneously order payments forward under a single clearing system.
The clearing system calculates the balances that each bank would have with those
payments executed, ensures they are all nonnegative (one of our criteria for schedule
validity) and then executes the transfer by updating all accounts simultaneously. This
distinction is significant when we consider Fig. 3c, in which no node has assets. A clearing
system ordered to simultaneously pay all debts would have no problem doing so in the
EN model, and in our model this constitutes a valid schedule. We highlight that there also
exist valid schedules for the instance in Fig. 3c in which all 4 banks go bankrupt, namely
the schedule in which every payment variable is set to zero; then no bank is withholding
(they all have zero assets), so the schedule is valid, and every bank has an overdue debt.

Lemma 1. For any given IDM instance and a (FP/PP/AoN) schedule, it is possible
to check in polynomial time whether the schedule is valid for that instance, and to
compute the number of bankruptcies under the schedule.

Proof sketch. It is possible to iterate over the schedule once and calculate: the assets of
every node at every time; the number of debts which are overdue; the number of nodes
which have overdue debts. The validity of the schedule (no withholding banks, non-
negative assets at every time, no overpaid debts, and no debts paid early, FP/PP/AoN
constraint) can similarly be verified in a single iteration over the schedule.
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Definition 4. Let (G,D,A0) be an instance. Then the set of timestamps {t :Dt1(e)=
t or Dt2(e)=t for some edge e} is the set of extremal timestamps.

Remark 1. There is a simple preprocessing step such that we can assume afterwards that
the lifetime T is polynomially bounded in the input size. This preprocessing step modifies
the instance such that every t∈ [T ] is an extremal timestamp. Observe that this procedure
does not make any previously impossible schedule outcome (number of bankruptcies and
finishing assets) possible, nor does it make any previously possible outcome impossible.

Hence we need not consider pathological cases in which the lifetime (and so the size
of schedules) is exponential in the size of the input.

2.3 Problem definitions

Here, we define some problems with natural real-world applications in the IDM.
IDM Bankruptcy Minimization
Input: an IDM instance (G,D,A0) and integer k
Question: does there exist a valid schedule S for the input such that at most k banks

go bankrupt (have overdue debts) at any point in the schedule?
IDM Perfect Schedule
Input: an IDM instance (G,D,A0)
Question: does there exist a valid schedule S for the input such that no debt is ever

overdue?
This problem is equivalent to IDM Bailout Minimization where b=0 and to IDM
Bankruptcy Minimization where k=0.
IDM Bailout Minimization
Input: an IDM instance (G,D,A0) and integer b
Question: does there exist a positive bailout vector B=(b1,b2,...b|V |) with

∑
i∈|V |bi≤

b and schedule S such that S is a perfect schedule for the instance (G,D,A0+B)?
IDM Bankruptcy Maximization
Input: an IDM instance (G,D,A0) and integer k
Question: does there exist a valid schedule S for the input such that at least k

banks go bankrupt (have overdue debts) at any point in the schedule?
This problem is interesting to consider for quantifying a “worst-case” schedule, where
banks’ behavior is unconstrained beyond the terms of their debts.
All of the problems above exist in the All-or-Nothing (AoN) variant, where an
AoN schedule is required; in the Partial Payments (PP) variant, in which a PP
schedule is required; and in the Fractional Payments (FP) variant, in which an
FP schedule is required.

All of the above problems, in all three variants, are in NP. For every yes-instance,
there exists a witness schedule polynomial in the size of the input the validity of which
can be verified in polynomial time by Lemma 1.

Every valid PP schedule is a valid FP schedule. Not every valid AoN schedule is
a valid PP schedule. In an AoN schedule, a bank may go bankrupt while still having
assets (insufficient to pay off any of its debts) - this is prohibited in any PP schedule
as that bank would be withholding. If we restrict the input to only those in which
for every edge e Da(e)=1 then every valid AoN schedule for that instance is a valid
PP schedule and a valid FP schedule.
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We call a graph multiditree whenever the underlying undirected graph (i.e. the undi-
rected graph that is obtained by replacing each directed multiedge with an undirected
edge) is a tree. We call rooted out-tree (or out-tree) a multiditree in which every edge is
directed away from the root. By an out-path we mean an out-tree where the underlying
undirected graph is a path, and the root is either of the endpoints.

Problem \ Constraint on graph G out-tree multiditree DAG general case

FP Bailout Minimization and
FP Perfect Scheduling

P
(Thms. 8,9)

P
(Thm. 9)

P
(Thm. 9)

P
(Thm. 9)

FP Bankruptcy Minimization ? ? NP-C
(Thm. 1)

NP-C
(Thm. 1)

PP Bailout Minimization and
PP Perfect Scheduling

P
(Thm. 8)

NP-C
(Thm. 3)

NP-C
(Thms. 2,4)

NP-C
(Thms. 2,3,4)

PP Bankruptcy Minimization ? NP-C
(Thm. 3)

NP-C
(Thm. 1)

NP-C
(Thms. 1-3,4)

PP Bankruptcy Maximization ? ? NP-C
(Thm. 5)

NP-C
(Thm. 5)

AoN, all problems NP-C
(Thms. 6+7)

NP-C
(Thms. 6+7)

NP-C
(Thms. 6+7)

NP-C
(Thms. 6+7)

Table 1: Summary of results. Note that Perfect Scheduling is a subproblem of
both Bailout Minimization and Bankruptcy Minimization.

3 Our Results

In this section we investigate the complexity of the problems presented. We first present
our hardness results in Subsection 3.1, and then show in Subsection 3.2 that under
certain constraints the problem of Bailout Minimization becomes tractable.

3.1 Hardness results

Here we show that every problem introduced is NP-complete in the PP and AoN vari-
ants, even in various special cases, and that Bankruptcy Minimization is NP-complete
and para-NP-Hard in all three variants for a variety of possible parameters.

Theorem 1. For each of the variants AoN, PP, and FP, Bankruptcy Minimiza-
tion is (i) NP-complete, even when the underlying graph G has O(1) vertices, and
(ii) NP-complete, even when T=1, the underlying graph G is a DAG with a longest
path of length 4, out-degree at most 2, in-degree at most 3, debt at most e3 per edge,
and starting assets at most e3 per bank.

By Theorem 1(i) it follows that each of the AoN, PP, and FP variants of
Bankruptcy Minimization are para-NP-hard, when parameterized by any pa-
rameter that is upper-bounded by the number of vertices, such as e.g. the number of
bankruptcies k, or the treewidth of the underlying graph.
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Theorem 2. AoN Perfect Scheduling and PP Perfect Scheduling are both
NP-complete even when T≤3, the underlying graph G is a DAG with out-degree at most
3, in-degree at most 3, debt at most e2 per edge, and starting assets at most e3 per bank.

Theorem 3. PP Perfect Scheduling is NP-complete even when the input is re-
stricted to multiditrees with diameter 6, to e1 debts, and to a maximum of 6 multiedges
between any two nodes.

In all the above results, the input is allowed to have unlimited (i.e. unbounded) total
assets in the system, which might be unrealistic in practically relevant financial systems.
We now show that, even in the highly restricted case where just e1 in liquid assets
exists in the system, PP Perfect Scheduling still remains NP-complete.

Theorem 4. AoN Perfect Scheduling and PP Perfect Scheduling are both
NP-complete even when sum(A0)=1, i.e. the total of all external assets is e1.

Proof. We proceed by reduction from Directed Hamiltonian cycle (DHC), an
NP-complete problem [12]:

Input: a digraph G=(V,E).
Question: does there exist a DHC on G (a directed cycle which visits every vertex

exactly once)?
For this reduction, we introduce the at-least-once gadget shown in Fig. 4. The

intuition of the proof is that there is only e1 in the system, and that in any perfect
schedule that e1 must pass through each gadget at least once, and therefore exactly once
since there are n such gadgets and n timesteps the e1 can “rest” at a center node vC.

vL vC vRuR wL

1@[1,T ] 1@[1,T ]

1@T1@T

1@1 1@3 ... 1@T−2

n−1@[1,T−1]

1@2 1@4 ... 1@T−1

n−1@[1,T−1]

1@T
At-least-once(v)

Fig. 4: The at-least-once gadget for node v ∈ V (GDHC) where
{(u,v),(v,w)}⊆ E(GDHC). Note the lifetime T=2|V (GDHC)|+1.

Given a DHC instance GDHC, construct a PP Perfect Scheduling instance
(GPS, D, A0) by introducing a copy of the at-least-once gadget for each node v∈GDHC

and then connecting gadgets within GPS iff there exists a directed edge from one of
the corresponding nodes in GDHC to the other, as shown in Fig. 4. We then give e1
in assets to exactly onearbitrarily-chosen right node vR in GPS, and e0 in assets to
every other node.
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Claim 1. If the IDM instance GPS, D, A0 admits a perfect schedule, then the DHC
instance GDHC admits a directed Hamiltonian cycle.

Claim 2. If the DHC instance GDHC admits a directed Hamiltonian cycle, then GPS

admits a perfect schedule.

Proof sketch. Given a DHC v1, v2, ..., vn, v1, we describe the order in which the e1
in “real” assets moves through the network in our constructed perfect schedule. All
other payments in the schedule can be efficiently found by debt cancellation, i.e. some
node u pays some node v some amount e1 at time t and v pays u the same amount
e1 also at time t, resulting in no “real” asset movement. This is possible by construction
of the instance (GPS, D, A0) - in general, there is no guarantee that v would also
have an active debt to u at time t. The e1 starts in node v1R, then is paid forward
in the order indicated by the edge labels in Figure 5. We emphasize once more that
the “payment” around the entire cycle at time 2n+1 does not result in any “real” asset
movement – all balances remain unchanged.

v1L

v1C

v1R

v2Lv2C
v2R

v3L

v3C

v3R

v4L

v4C

v4R

v5L
v5C v5R

···

vnL

vnC

vnR

1

12

2

3

4

4

5

6

6

7 8
8

2n−4

2n−3

2n−2

2n−2

2n−1

2n

2n+1

2n+1

2n+1

2n+1
2n+12n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

2n+1

Fig. 5: The path that the “real” e1 takes in our constructed PP Perfect Scheduling
instance, if the input graph G contained a Hamiltonian cycle.

Hence we have that there exists a perfect schedule in (GPS,D,A0) iff there exists
a Hamiltonian cycle in GDHC. This completes the proof of Theorem 4.

Theorem 5. AoN Bankruptcy Maximization and PP Bankruptcy Maximiza-
tion are both NP-complete even when T=2, the underlying graph G is a DAG with
out-degree at most 2, in-degree at most 3, debt at most e2 per edge, and assets at most
e3 per bank.
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The constraints imposed by AoN schedules rapidly increase the problem complexity.
Indeed, every problem considered is NP-complete, even whenever the input graph is
an out-path on at most 4 vertices and with lifetime T≤2.

Theorem 6. When the underlying graph G is an out-path on 4 vertices AoN Per-
fect Scheduling is weakly NP-Hard when the lifetime T=2, and strongly NP-Hard
when T is unbounded.

Theorem 7. AoN Bankruptcy Maximization is NP-Hard even when the under-
lying graph G is an out-path on 3 vertices and the lifetime T of the graph is at most 2.

3.2 Polynomial-time algorithms

In this section we show that the PP variant of Bailout Minimization is solvable in
polynomial time on out-trees, while its FP variant is always polynomial-time solvable.
Our algorithm for the PP variant contrasts with the NP-completeness of its subproblem
PP Perfect Scheduling on both DAGs (Theorem 2) and multiditrees (Theorem 3);
note that out-trees are a subclass of both DAGs and multiditrees.

Theorem 8. PP Bailout Minimization is in P when the input is restricted to
out-trees.

Proof sketch. We show that, given an instance of PP Bailout Minimization
G, D, A0, b in which G is an out-tree on at least 3 nodes, it is always possible
to produce an updated instance which is equivalent (a yes-instance iff the original
instance was a yes-instance) and in which G is strictly smaller (has fewer nodes). The
process is illustrated in Fig. 6, and is as follows:

...b=39

u
23

v
3

w
5

x
0

. . .

1@[2,4]
4@[1,9]
2@[8,9]

1@[1,5]
3@[3,5]

3@[3,7]
4@[5,5]

(a)

...b=38

u
23

v
4

w
5

x
0

. . .

1@[2,4]
4@[1,9]
2@[8,9]

1@[1,5]
3@[3,5]

3@[3,7]
4@[5,5]

(b)

...

b=38

u
23

v
4

wx
5

. . .

1@[2,4]
4@[1,9]
2@[8,9]

8@[5,5]
3@[7,7]

(c)

...

b=36

u
23

v
6

. . .

1@[2,4]
1@[1,5]
3@[1,7]
2@[8,9]

(d)

Fig. 6: Example of shrinking an out-tree while preserving (non)existence a bailout
schedule.
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1. While any node v is insolvent, increment v’s assets and decrement the bailout
amount b. In Fig. 6a, for instance, node v has e7 in income and e3 in external
assets, but e11 in debt, so is insolvent. In Fig. 6b v’s assets have increased by e1
and the bailout amount has decreased by e1.

2. Update every debt from a parent to its leaf children to be a 1-interval at the end
timestep as, so a debt due in the interval [3,7] is updated to be due at time 6 exactly
(i.e. at [7,7]).

3. While any parent has two leaf children (i.e. in Fig. 6b v has two leaf children w and x),
merge the two sibling leaves into a single leaf (i.e. in Fig. 6cw and x are combined into
wx). Sum node assets, and combine debts due at the same time into a single debt (i.e.
v’s debts 1@[6,6] to w and 4@[6,6] to x are combined into a single debt 5@[6,6] to wx).

4. While there exist 3 nodes j, k, l with l a leaf and the only child of k, and k a child
of j prune l. In Fig. 6c j=u, k=v, and l=wx, and we prune wx. That is, update
the debts from j to k to reflect exactly the constraints imposed by k’s debts to l,
then remove l from the graph. If payments from j cannot cover all payments to l
in time (i.e. k is necessarily illiquid), increment k’s assets and decrement the bailout
amount b until they do, then update the debts. (Binary search may be applied where
debt amounts are very large.)

In Fig. 6d, the 8@[5,5] debt to wx will be paid using e6 of v’s external assets
(including e1 of “solvency” bailout and e2 of “liquidity” bailout), e1 from u’s debt
1@[2,4], and e1 of u’s debt at [1,9], now constrained to the interval [1,5]. The 3@[7,7]
debt to wx will be paid using e3 of u’s debt at [1,9], now constrained to the interval
[1,7]. The money received at v in the interval [8,9] cannot be usefully directed to wx, as
the earliest it could be received (t=8) is still later than the latest debt from v (t=7).

5. If the instance has more than two nodes, loop to step 2. Otherwise, if the bailout
amount b<0, reject, else accept. We emphasize the root necessarily has enough
assets to pay all its debts, because every node is solvent after step 1.
Note that the algorithm presented loops |V (G)| times in the worst case (i.e. when

the input is a path), and each step runs in polynomial time.

Theorem 9. FP Bailout Minimization is in P.

Proof sketch. We show that an instance of FP Bailout Minimization G,D, A0, b can
be encoded in a linear program. The constraints are all expressed as linear expressions:
– sum(B)≤b.
– The set of payment variables pte is defined as in subsection 2.2.
– The definitions of Itv, Ot

v, and etv are all linear combinations of payment variables.
Set e0v :=A0[v]+B[v]; that is, the starting assets of v are its external assets combined
with the bailouts received at v under the vector B.

– The constraints on valid schedules in Definition 1 can all also be expressed as linear
combinations.

– We additionally impose that no banks are bankrupt under the schedule, or equiva-
lently that no debt is ever overdue. That is, for every edge e and debt D(e)=(a,t1,t2),∑

t∈[t1,t2]p
t
e=a.

Any assignment to B and to the payment variables satisfying the above is necessarily a
valid perfect schedule on an instance in which starting assets of nodes were supplemented
by at most eb in total.

Linear programs can be efficiently solved when fractional solutions are admitted,
hence all instances of FP Bailout Minimization are tractable. We emphasize that this
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is in contrast with PP Bailout Minimization and FP Bankruptcy Minimization,
both of which are NP-complete. The method above solves neither of these: the former
would correspond to an integer linear program (which are NP-complete in general) and
it is not possible to express a constraint on the number of bankruptcies through a linear
combination on the payment variables.

4 Conclusion and open problems

This paper introduces the Interval Debt Model (IDM), a new model seeking to capture
the temporal aspects of debts in financial networks. We investigate the computational
complexity of various problems involving debt scheduling, bankruptcy and bailout with
different payment options (All-or-nothing (AoN), Partial (PP), Fractional (FP)) in this
setting. We prove that many variants are hard even on very restricted inputs but certain
special cases are tractable. For example, we present a polynomial time algorithm for PP
Bailout Minimization where the IDM graph is an out-tree. However, for a number
of other classes (DAGs, multitrees, total assets are e1), we show that the problem
remains NP-hard. This leaves open the intriguing question of the complexity status of
problems which are combinations of two or more of these constraints, most naturally on
multitrees which are also DAGs, an immediate superclass of our known tractable case.

We prove that FP Bailout Minimization is polynomial-time solvable by expressing
it as a Linear Program. Can a similar argument be applied to some restricted version
of FP Bankruptcy Minimization (which is NP-Complete, in general)? A natural general-
ization is simultaneous Bailout and Bankruptcy minimization i.e. can we allocate eb in
bailouts such that a schedule with at most k bankruptcies becomes possible. Variations
of this would be of practical interest. For example, if regulatory authorities can allocate
bailouts as they see fit, but not impose specific payment times, it would be useful to
consider the problem of allocation of eb in bailouts such that the maximum number of
bankruptcies in any valid schedule is at most k. Conversely, where financial authorities
can impose specific payment times, the combination of the problems Bankruptcy
Minimization and Bailout Minimization would be more applicable.

Finally, can we make our models even more realistic and practical? How well do our ap-
proaches perform on real-world financial networks? Can we identify topological and other
properties of financial networks that may be leveraged in designing improved algorithms?
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