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Discretization by piecewise polynomials is a well-established and well-understood
approach for the numerical solution of partial differential equations. For time-
dependent problems, independent piecewise polynomial approximations can be
used in space and time. Given stability of the joint space-time approximation, the
accuracy of the method can be expressed in terms of the discretization parame-
ters. It is clear, however, that the space and time discretizations must be balanced
for an efficient numerical simulation, since the underrefined discretization space
will dictate the accuracy, whereas the overrefined space will determine the overall
computational cost.

In this note we address optimal balancing of several piecewise polynomial dis-
cretization spaces for the first kind space-time boundary integral formulations for
the homogeneous heat equation with Dirichlet boundary conditions. Let Ω ⊂ Rd,
d ≥ 2 be a bounded domain with a smooth boundary Γ := ∂Ω and I := [0, T ]
be the time interval of interest. After reduction to the mantle of the space-time
cyllinder Σ := Γ× I, cf. [6, 3], the problem is rephrased as the boundary integral
equation

(1) V ψ(x, t) :=

∫ T

0

∫
Γ

G(x− y, t− s) dyds = f(x, t), x ∈ Γ, t ∈ I,

where ψ is the unknown flux, f is the known data (depending on the Dirichlet
data) and G is the fundamental solution of the heat equation

(2) G(x, t) =

{
(4πt)−d/2e−|x|

2/4t, t ≥ 0,

0, t < 0.

We write Hr,s(Σ) := L2(I, Hr(Γ)) ∩Hs(I, L2(Γ)) for r, s ≥ 0, equipped with the
graph norm, and H−r,−s(Σ) := Hr,s(Σ)′ for its dual. The single layer operator
V : H−1/2,−1/4(Σ) → H1/2,1/4(Σ) is an isomorphism and satisfies the following
coercivity estimate [1]

(3) ∃cV > 0 : 〈V q, q〉 ≥ cV ‖q‖2H−1/2,−1/4(Σ), ∀q ∈ H−1/2,−1/4(Σ).

This remarkable property being typical for elliptic operators immediately implies
that any conforming discretization XL ⊂ H−1/2,−1/4(Σ) of (1) is stable and that
the discrete solution ψL ∈ XL is quasi-optimal, i.e.

(4) ‖ψ − ψL‖H−1/2,−1/4(Σ) ≤
||V ||
cV

inf
ηL∈XL

‖ψ − ηL‖H−1/2,−1/4(Σ).

This allows to construct a number of conforming discretization spaces XL for the
numerical solution of (1). In particular, let the polynomial degrees in the space
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and time domain px and pt be fixed and consider the following nested sequence of
discretizations in space and time on meshes defined by bisection

X x0 ⊂ X x1 ⊂ · · · ⊂ X xi ⊂ · · · ⊂ H−
1
2 (Γ), X t0 ⊂ X t1 ⊂ · · · ⊂ X tj ⊂ · · · ⊂ H−

1
4 (I)

The individual subspaces admit L2-orthogonal representations

X xi = W x
0 ⊕W x

1 ⊕ · · · ⊕W x
i , X tj = W t

0 ⊕W t
1 ⊕ · · · ⊕W t

j ,

so that for any ψ ∈ L2(Σ) holds

(5) ψ =
∑

(`x,`t)∈N2
0

w(`x,`t), w(`x,`t) ∈W
x
`x ⊗W

t
`t .

Conforming discretizations can now be derived from (5) by restricting the non-

negative quadrant to finite, possibly anisotropic index sets IσL, Ĵ
σ
L ⊂ N2

0, where σ
indicates the anisotropy and thereby the optimal balance between space and time
discretizations.

In view of (4) it is natural to take the H−1/2,−1/4(Σ)-norm as the error measure.
As a comparison criterion we take the asymptotic convergence rate γ of the error in
this norm with respect to the dimension of the discretization space NL for smooth
solutions ψ:

γ := sup

{
γ̃ : ‖ψ − ψL‖

H− 1
2
,− 1

4 (Σ)
≤ cN−γ̃L , where NL →∞

}
.(6)

In the context of particular discretizations considered below, the smoothness re-

quirement may be replaced by ψ ∈ Hµ,λ(Σ) or Hµ,λ
mix(Σ) with 0 ≤ µ < px + 1 and

0 ≤ λ < pt + 1, cf. [2, Remark 1]. This allows the exclusion of the borderline case
µ = px + 1, λ = pt + 1, where the convergence estimates are usually corrupted by

logarithmic terms, and thereby simplifing the argument. Here the space Hµ,λ
mix(Σ)

stands for the hilbertian tensor product Hr(Γ)⊗Hs(I).

1. Anisotropic full-tensor product discretizations are a natural choice:

(7) IσL = {(`x, `t) : `x ≤ L/σ, `t ≤ σL}

Notice that the error measure is given by the anisotropic norm (4), thus
nontrivial values σ 6= 1 are expected in this case.

2. Anisotropic sparse-tensor product discretizations are defined as in [4]

(8) ĴσL = {(`x, `t) : `xσ + `t/σ ≤ L}

This choice is potentially more efficient for smooth solutions, since it ex-
cludes the largest orthogonal subspace combinations (implying ĴσL ⊂ IσL)
without compromising the accuracy.

The outcomes of the error analysis are summarized in the table below, cf. [2] for
the details. The argument is based on appropriate norm equivalences / bounds [2,
(17)–(19)] that can be found in [8, Proposition 3], [5, Proposition 1] and derived
along the lines of [7, Proposition 3].
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The numerical results in [2, 9] validate our theoretical findings. The interested
reader will find there also extensions to adaptive sparse grids and numerical solu-
tion by combination technique.

We finally remark that for some values (px, pt) algorithmic accelerations are
possible (e.g. when the matrix of the algebraic system is block triangular [9],
etc.). Such effects are not considered here.

Full tensor product, d = 2

(px, pt) conv. rate γ scaling σ2

(0, 0) 15
22 ≈ 0.68 6

5

(1, 0) 5
6 ≈ 0.83 2

(1, 1) 45
38 ≈ 1.18 10

9

(3, 1) 3
2 = 1.50 2

Sparse grids, d = 2

(px, pt) conv. rate γ scaling σ2

(0, 0) 7
6 ≈ 1.17 1

(1, 0) 5
4 = 1.25 1

(1, 1) 13
6 ≈ 2.17 1

(3, 1) 9
4 = 2.25 1

Full tensor product, d = 3

(px, pt) conv. rate γ scaling σ2

(0, 0) 15
32 ≈ 0.47 6

5

(1, 0) 5
8 ≈ 0.63 2

(1, 1) 45
56 ≈ 0.80 10

9

(3, 1) 9
8 ≈ 1.13 2

Sparse grids, d = 3

(px, pt) conv. rate γ scaling σ2

(0, 0) 3
4 = 0.75 2

(1, 0) 9
8 ≈ 1.13 2

(1, 1) 5
4 = 1.25 2

(3, 1) 17
8 ≈ 2.13 2
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