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Abstract—X-ray baggage security screening is in widespread
use and crucial to maintaining transport security for
threat/anomaly detection tasks. The automatic detection of
anomaly, which is concealed within cluttered and complex elec-
tronics/electrical items, using 2D X-ray imagery is of primary
interest in recent years. We address this task by introducing
joint object sub-component level segmentation and classification
strategy using deep Convolution Neural Network architecture.
The performance is evaluated over a dataset of cluttered X-ray
baggage security imagery, consisting of consumer electrical and
electronics items using variants of dual-energy X-ray imagery
(pseudo-colour, high, low, and effective-Z). The proposed joint
sub-component level segmentation and classification approach
achieve ∼ 99% true positive and ∼ 5% false positive for anomaly
detection task.

Index Terms—X-ray imagery, superpixel, deep convolutional
neural network, anomaly detection, classification.

I. INTRODUCTION

With the increasing volume of traffic, we need to ensure an
efficient system for aviation securing capable of addressing
the evolving threat landscape that emanates from broader
global geopolitical events. Currently multiple-view X-ray bag-
gage security screening is widely used to maintain aviation
and transport including the screening of electronics/electrical
items. To address the future challenges of increasing volumes
and complexities, the recent focus on the use of automated
screening approaches is of particular interest. This includes
the potential for automatic anomaly/threat detection as a
methodology for concealment detection within complex elec-
tronics and electrical items screened using low-cost, 2D X-ray
imagery. Passenger baggage is currently inspected manually
using dual-energy multiple-view X-ray imaging. The threat
concealment can also be very subtle and very well hidden
(Figure 1A) challenging for a human operator to identify.

Early work on automated threat detection within X-ray secu-
rity images is based on hand-crafted features [1], [2] (Bag-of-
Visual-Words), which is applied together with a classifier such
as a Support Vector Machine. More recent work [3], [4], that
specifically leverage recent advances in Convolutional Neural
Networks (CNN) deep learning architectures [5], [6], have now
been shown to outperform earlier approaches in terms of true
positive detection, false alarm rate and the range of objects
that can be detected in a side by side comparison. By contrast,
CNN approach of [3] operates at scan rate (<1 sec. per image),
with higher accuracy and targets probabilistic item localisation
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Fig. 1. Exemplar 2D X-ray imagery (A) used for object level anomaly
detection (B/C) via mask R-CNN segmentation and sub-component level
anomaly detection (D) via joint object over-segmentation and classification.

within each X-ray view. The work of [7] considers a unique
feature representation as a critical component for detection
within cluttered X-ray imagery for anomaly detection. In the
works of [8], [9], semi-supervised anomaly detection strategies
are proposed based on high reconstruction errors produced
by a generator network adversarially trained on benign X-ray
imagery only.

Earlier superpixel algorithms can be classified into cluster-
ing and graph based strategies. Clustering strategies [10], [11],
leverage traditional clustering techniques such as k-means for
superpixel segmentation. Graph based approaches [12], [13]
define the superpixel over-segmentation as a graph partitioning
problem, in which nodes are represented by pixels and the
edges denote the strength of connectivity between adjacent
pixels. Most of these methods rely on traditional hand-crafted
features and do not use deep CNN techniques. More recent
approach, such as in [14], deep features are used for su-
perpixel segmentation bypassing the gradients through non-
differentiable superpixel algorithms. CNN based unsupervised
data clustering approaches are proposed [15], [16] in literature.
A deep embedded clustering framework, for simultaneously
learning feature representations and cluster assignments is
proposed in the work of [16]. A more recently, an end-to-
end deep learning-based clustering algorithm called Superpixel
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Fig. 2. End-to-end joint segmentation and classification CNN architecture. Each segment (green/red contours) is extracted using differentiable SLIC prior to
classification.

Sampling Networks (SSN) [17] is developed for superpixel
segmentation task where it can use image-specific constraints.
However, none of the above discussed works is targeted for
X-ray image application specific tasks. Following the work in
[18], in our work we leverage the use of superpixels [10], [17]
within X-ray security baggage image classification with prior
object segmentation [19] as an enabler to CNN based end-to-
end joint sub-component level anomaly detection within X-ray
security imagery.

In this work, we evaluate two automatic segmentation
strategies for intra-object anomaly detection in X-ray security
imagery, as illustrated in the Figure 1A:-

– First, object level segmentation is performed (Figure 1B
→ Figure 1C).

– Secondly, end-to-end joint segmentation and classi-
fication CNN architecture is proposed (Figure 1C
→ Figure 1D) for anomaly detection as a binary,
{anomaly, benign}, classification task.

– Additionally, we study the impact of dual-energy X-ray
imagery (pseudo-colour, high, low and effective-Z) for
anomaly detection task.

II. PROPOSED APPROACH

We outline the approach of this paper in the following
section: object level localisation using Mask R-CNN [19] in
Section II-A, followed by CNN based end-to-end segmentation
and classification strategy in Section II-B.

A. Object Level Localisation

We consider contemporary CNN architectures, such as
Mask R-CNN [19], Faster R-CNN [20], for object detection
and segmentation task to explore their applicability for gen-
eralised object detection/instance segmentation tasks within
the context of X-ray security baggage imagery. Mask R-
CNN [19] relies on region proposals followed by ROI-Pooling
to produce standard-sized outputs, which include pixel-wise
image mask of a detected object, suitable for input into a
secondary classifier. It addresses feature map misalignment
of Faster R-CNN [20] by incorporating bilinear boundary
interpolation. Mask R-CNN combines object localisation with
instance segmentation of the object in the image (Figure 1B
→ Figure 1C). This architecture [19] is evaluated over an

electronics and electrical items packed within cluttered X-ray
security baggage, for anomaly detection task.

B. Joint Segmentation and Classification via CNN

For object over-segmentation (Figure 1D), we apply deep
CNN based object sub-component level segmentation method,
Super Sampling Network (SSN) [17] combined with classifi-
cation network for {anomaly, benign} classification. At the
core of SSN is a differentiable clustering technique, which
is inspired by Simple Linear Iterative Clustering (SLIC) [10]
approach. SLIC performs iterative clustering, where initially
image is segmented into roughly equal sized segments. To
measure the similarity between the segments, it introduces a
new distance metric which considers the size of the segment.
It takes the user define number of approximately equally-sized
superpixel K. For an image with N pixels, the approximate
size of each superpixel will be N/K.

The core of part of SLIC [10] is iterative clustering,
which is non-differentiable due to the computation of pixel
to superpixel associations involving nearest neighbour opera-
tion. Instead of computing hard pixel-superpixel associations,
SSN approach computes soft-associations between pixels and
superpixels, which makes it differentiable.

Figure 2 depicts the joint segmentation and classification
architecture. In SSN, the CNN for feature extraction is
composed of a series of convolution layers interleaved with
batch normalisation and ReLU activation. The max-pooling
layer down samples the input by factor 2, after 2nd and 4th

convolutional layer output. Convolution filter size of 3 × 3
is used with the number of output channels set to 64 in
each layer. Other CNN architectures can also be integrated
easily in this framework. The final features are passed onto
the differentiable SLIC module, which iteratively updates the
pixel-superpixel association and computes superpixel centres.
We use reconstruction loss (lrcon), which is cross-entropy loss,
and compactness loss (lcomp) to reduce the spacial variance in
each superpixel cluster. The total loss is the sum of the above
two loss functions (L = lrcon + λlcomp, where λ = 1e− 4).

Followed by this stage, the superpixels are fed into a
binary classifier (as shown in the Figure 2) for anomaly
detection in each segment. Each segmented image region,
sub-component level segmentation, is subsequently classified
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Fig. 3. Exemplar high, low, and effective-Z X-ray imagery from DEEi dataset
(A) used for object level (B) and sub-component level segmentation (C)
{anomaly, benign} classification.

using a deep CNN architecture model formulated as a binary,
{anomaly, benign}, classification task.
SqueezeNet [21] is a small network architecture that uses many
1-by-1 filters to aggressively reduce the number of weights.
It offers equivalent accuracy to the AlexNet [5] yet operating
with 50× fewer parameters.
VGG [22] is a seminal network architecture that consists of
several deep convolutional layers (e.g. 11−19 weight layers),
with a fixed kernel size (3×3) (convolution stride is set to 1),
stacked on top of each other in increasing depth, which shows
notable performance improvements on prior architecture [5],
[23].
ResNet [6] solves the issue of vanishing gradient present in the
forward feed and backward propagation processing in previous
CNN architectures by introducing skip connection, parallel to
the regular convolutional layers (18− 152 in depth).

III. EVALUATION

This section presents the dataset used, the implementation
details, and the results of our experiments.

A. Experimental Setup

Our experimental setup comprises of following dataset.
DEEi. The dataset (Durham Electrical and Electronics Items)
is constructed using a 2D X-ray scanner with associated
pseudo-colour materials mapping via dual-energy. All X-ray
imagery is gathered locally by using a dual-energy X-ray
scanner (Gilardoni FEP ME 640 AMX) [24]. The dataset
consists of large consumer electronics (e.g. laptop, mobile) and
electrical (e.g. iron, hairdryer, toaster) items with and without
anomaly (e.g. marzipan, screws, metal plates, sharps, etc.)
concealment present as illustrated in Figures 1A. Our dataset
consists of disparate models and shapes of electronics items,
where the inserted anomaly concealment might be challenging
to identify. In total, we use 7, 022 X-ray imagery (70 : 30

data split) for our experiment. Additionally, we access the
dual-energy X-ray (‘raw’), data (three types - high (hdata),
low (ldata) energy, and effective-Z (zdata) response (Figure
3)) from the X-ray scanner [24] for {anomaly, benign}
classification.

Training for all architecture variants is performed via trans-
fer learning using stochastic gradient descent with a momen-
tum of 0.9, a learning rate of 0.0002, a batch size of 64. All
networks are trained on NVIDIA 1080Ti GPU via the PyTorch
framework [25].

B. Evaluation of Object and Sub-component Level Classifica-
tion

Our model performances are evaluated in terms of Accuracy
(A), Precision (P), F-score (F1), True Positive (TP%), and
False Positive (FP%), as presented in the Tables I and II where
we additionally compare our ‘raw’ X-ray data approach to
the use of the pseudo-colour imagery conventionally used in
automated object detection studies in X-ray images [3], [8],
[26].

TABLE I
OBJECT LEVEL SEGMENT AND CLASSIFICATION USING VARYING CNN

ARCHITECTURES WITH PSEUDO-COLOUR AND ‘RAW’ X-RAY DATA.

Data Network A P F1 TP(%) FP(%)

O
bj

ec
t

le
ve

l
se

gm
en

ta
tio

n

pseudo-
colour

SqueezeNet 0.83 0.78 0.82 93.14 26.97
VGG-16 0.76 0.69 0.75 94.26 39.47
ResNet50 0.86 0.84 0.84 97.29 16.59

hdata

SqueezeNet 0.82 0.76 0.81 92.67 28.01
VGG-16 0.75 0.67 0.73 96.76 45.46
ResNet50 0.85 0.80 0.85 94.83 22.24

ldata

SqueezeNet 0.75 0.69 0.75 88.64 35.28
VGG-16 0.71 0.63 0.68 97.18 55.01
ResNet50 0.81 0.80 0.64 84.84 20.76

zdata

SqueezeNet 0.76 0.73 0.65 80.31 21.32
VGG-16 0.68 0.66 0.64 84.58 47.73
ResNet50 0.84 0.80 0.81 90.62 20.45

In the object-level segmentation strategy (Table I), where
the target object is first detected, localised and isolated via
segmentation prior to binary classification, the maximum accu-
racy is achieved with ResNet50 (A: 0.86, TP: 97.29% - Table
I, pseudo-colour), due to the focused feature representation.
We observe that the use of ‘raw’ X-ray data achieves good
true positive (TP: 97.18% - Table I, ldata), but suffers with
relatively high false positive rate. The lowest FP is 16.59%
(with ResNet50 - Table I, pseudo-colour), but fails to outper-
form object sub-component level strategy (FP: 4.54% - Table
II, pseudo-colour).

From the results presented in Tables I and II, we ob-
serve from the two strategies considered that the joint sub-
component level segmentation and classification strategy for
anomaly detection via ResNet50, offers significantly superior
anomaly detection performance (A: 0.97, TP: 98.99%, FP:
4.54% - Table II, pseudo-colour) compared to an object level
segmentation strategy overall (Table I). Although SqueezeNet



TABLE II
OBJECT SUB-COMPONENT LEVEL JOINT SEGMENTATION AND

CLASSIFICATION WITH PSEUDO-COLOUR AND ‘RAW’ X-RAY DATA.

Data Network A P F1 TP(%) FP(%)

Su
b-

co
m

po
ne

nt
le

ve
l

se
gm

en
ta

tio
n

pseudo-
colour

SqueezeNet 0.95 0.92 0.94 99.10 8.90
VGG-16 0.93 0.91 0.93 95.89 8.55
ResNet50 0.97 0.95 0.97 98.99 4.54

hdata

SqueezeNet 0.96 0.94 0.96 98.86 6.12
VGG-16 0.96 0.94 0.96 98.71 6.01
ResNet50 0.96 0.94 0.96 99.79 6.16

ldata

SqueezeNet 0.93 0.91 0.93 96.85 9.53
VGG-16 0.95 0.93 0.98 98.76 7.09
ResNet50 0.96 0.93 0.95 98.64 6.37

zdata

SqueezeNet 0.90 0.87 0.89 95.28 15.06
VGG-16 0.95 0.93 0.95 97.18 6.52
ResNet50 0.96 0.94 0.96 98.99 5.93

hlzdata

SqueezeNet 0.96 0.94 0.96 99.74 6.26
VGG-16 0.96 0.94 0.96 99.75 6.03
ResNet50 0.97 0.94 0.94 100 6.07

achieves the maximum true positive (TP: 99.10%), but it
suffers relatively high false positive (FP: 8.90%) when us-
ing pseudo-colour X-ray imagery as presented in Table II -
pseudo-colour. When we use ‘raw’ X-ray data for classifi-
cation, we achieve the highest true positive (TP: 100%, A:
0.97, Table II, hlzdata) with ResNet50 and combination of
high, low and effective-Z energy data, but this is effected by
the relatively high false positive rate (FP: 6.07%, Table II,
hlzdata). Overall, ResNet50 performs the best across all the
three (high, low, effective-Z and combination) ‘raw’ X-xay
data with TP > 99%. Overall the sub-component level seg-
mentation provides higher granularity information compared
to the object level segmentation, henceforth achieves the best
performance.

To our knowledge, the proposed work on joint end-to-end
object sub-component level segmentation and classification is
one of the first works for the anomaly detection task. There-
fore, we consider two segmentation strategies, i.e., object-level
(using Mask R-CNN)vs sub-component level to compare the
results (Tables I, II).

Examples of the detection (object level segmentation via
Mask R-CNN) and classification of the consumer electrical
and electronics items containing an anomaly are depicted
in Figure 4A. Figure 4B illustrates exemplary qualitative
results of joint sub-component segmentation and classifica-
tion of electrical and electronics items, where red colour
indicates anomalous region while green represents benign
sub-components. Examples of anomaly detection using ‘raw’
energy X-ray data are depicted in the Figure 5. The benefit
of using sub-component level segmentation is it’s capability
to provide precise localisation of the anomalous region within
complex object (Figures 4B, 5).

IV. CONCLUSION

We evaluate the performance impact of two different strate-
gies, object segmentation, and object sub-component segmen-

B

A

Fig. 4. Examples of {anomaly, benign} detection and classification from
DEEi dataset: (A) object level segmentation and (B) joint object sub-
component segmentation (contours) and classification (green: benign, red:
anomaly).

tation, for concealed threat/anomaly detection within consumer
electrical/electronics item using deep CNN based end-to-end
architecture. Our experimental results exhibit that the best
performance (> 99% TP and ∼ 5% FP) is achieved with
object sub-component segmentation strategy on CNN classifier
using ‘raw’ X-ray data (a combination of high, low energy and
effective-Z). To the best of our knowledge, the use of ‘raw’
X-ray imagery for anomaly detection tasks is one of the first
and novel of its kind. Therefore, our study possibly opens up
a plethora of broad research interests in the X-ray imagery
domain. Within the context of electrical and electronics items,
this work offers the automatic first-stage screening of aviation
baggage for anomalous item detection at the component level
as an indicator of potential threat presence. In our future
work on anomaly detection, we primarily focus on combining
multiple data (a combination of pseudo-colour and high, low
energy and effective-Z) to achieve higher accuracy and lower
false positive. Additionally, we will target varied electronic
and electrical items across a full range of operational X-ray
characteristics.
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Fig. 5. Examples anomaly detection using high, low, and effective-Z X-
ray imagery (‘raw’) from DEEi dataset: object sub-component segmentation
(contours) and classification (green: benign, red: anomaly).

REFERENCES

[1] D. Turcsany, A. Mouton, and T. P. Breckon, “Improving feature-based
object recognition for x-ray baggage security screening using primed
visualwords,” in IEEE Int. Conf. on Industrial Technology, Feb 2013,
pp. 1140–1145.

[2] M. Bastan, W. Byeon, and T. M. Breuel, “Object recognition in multi-
view dual energy x-ray images.” in Proc. British Machine Vision
Conference, vol. 1, no. 2, 2013, p. 11.

[3] S. Akcay and T. P. Breckon, “An evaluation of region based object
detection strategies within x-ray baggage security imagery,” in Proc.
Int. Conf. on Image Processing, 2017, pp. 1337–1341.

[4] S. Akcay, M. Kundegorski, C. Willcocks, and T. Breckon, “On using
deep convolutional neural network architectures for automated object
detection and classification within x-ray baggage security imagery,”
IEEE Transactions on Information Forensics Security, vol. 13, no. 9,
pp. 2203–2215, 2018.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. of the Int. Conf. on
Neural Information Processing Systems, 2012, pp. 1097–1105.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[7] L. D. Griffin, M. Caldwell, J. T. A. Andrews, and H. Bohler, ““Unex-
pected item in the bagging area”: Anomaly detection in x-ray security
images,” IEEE Transactions on Information Forensics and Security,
vol. 14, no. 6, pp. 1539–1553, 2019.

[8] S. Akcay, A. A. Abarghouei, and T. Breckon, “Ganomaly: Semi-
supervised anomaly detection via adversarial training,” in Proc. Asian
Conf. on Computer Vision. Springer International Publishing, 2018.

[9] S. Akcay, A. Atapour-Abarghouei, and T. Breckon, “Skip-ganomaly:
Skip connected and adversarially trained encoder-decoder anomaly de-
tection,” in Proc. Int. Joint Conf. on Neural Networks. IEEE, 2019,
pp. 1–8.

[10] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk,
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