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Abstract: We performed a fully-Bayesian Gaussian process emulation and sensitivity analysis of a numerical model 

that simulates transport cutting slope deterioration. In the southern UK, a significant proportion of transport 

infrastructure is built in overconsolidated high-plasticity clay that is prone to deterioration due to seasonal wetting-

drying cycles and weather extremes (Stirling 2021; Postill et al. 2021). Geotechnical modelling software (FLAC) 

was used to simulate the dissipation of excess pore water pressure and seasonal pore water pressure cycles in cuttings 

(Rouainia et al. 2020). However, due to their high computational expense, it was impractical to perform the number 

of computer simulations that would be sufficient to understand deterioration behaviour over a range of cutting 

geometries and soil strength parameters. To address this, we used Gaussian processes and Bayesian inference to 

emulate the relation between deterioration factors and slope properties (Bastos and O’Hagan 2009). These factors 

include time to failure (Svalova et al. 2021), failure area, and factor of safety. For our training data, we used a Latin 

hypercube design to create a computer experiment of 76 numerical models whereby we varied slope height, angle, 

peak cohesion, peak friction, and permeability. Some of the runs did not reach ultimate failure state, resulting in 

censored times to failure and failure areas. We used Markov chain Monte Carlo sampling to obtain posterior 

distributions of the emulator parameters, as well as the censored times to failure (Brooks et al. 2010; Kyzyurova 

2017). Our emulator could be used to inform slope design, management, and maintenance on different spatio-

temporal scales of transport networks. 
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1 Introduction 

 

A large part of the UK rail infrastructure is approaching the age of 200 years whilst being built on/within soils that 

are vulnerable to weathering and deterioration. Here, we focus on cuttings in high-plasticity soils which were 

identified as being of interest by stakeholders and have been shown to be vulnerable to delayed failure on transport 

networks (Perry 1989). Such high-plasticity earthworks form a significant proportion of the southern UK railway 

network and have undergone significant deterioration over its working life. A lack of understanding of the long-

term deterioration of infrastructure slopes can lead to uncontrolled deformations, thus reduced service performance 

(Briggs et al. 2019), negative impact on the economy (Power and Abbott 2019), and fatalities (Smith 2020). 

The present study focuses on obtaining a better understanding of the deterioration of infrastructure assets, and thus 

reduce the risks posed to infrastructure systems. We study deterioration through emulating a set computer 

experiment runs (Rouainia et al. 2020; Postill et al. 2021) using Gaussian processes (Rasmussen and Nickisch 

2010; Su et al. 2016) and Bayesian inference (O’Hagan 2006). The latter allows the use of expert opinion, which 

is very useful when experimental data is computationally expensive to obtain. Our simulator is based on a 

geotechnical model (GM) deploying a strain-softening Mohr-Coulomb constitutive model and is implemented 

using the Fast Lagrangian Analysis of Continua with Two-Phase Flow software (FLAC-TP; FLAC, 2016). 

Overconsolidated clays undergo strain-softening during swelling, as observed following the excavation of cut 

slopes. Softening also occurs during seasonal ratchetting driven by seasonal shrink-swell cycles. The adopted 

softening behaviour is derived from previous modeling studies (Potts et al. 1997; Ellis and O’Brien 2007; 

Summersgill et al. 2018) as well as laboratory and field data (Bromhead and Dixon 1986). The impact of weather 

and climate on stability is modeled through a coupled fluid-mechanical approach (Rouainia et al. 2020) utilizing 

a non-local strain-softening model (Summersgill et al. 2018; Postill et al. 2021). This allows a detailed assessment 

of weather-driven deterioration. 
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Figure 1. Examples of winter FOS measurements, against time since construction (in years). Red line indicates an FOS of 

unity. The legends indicate the inputs height (H), angle cotangent (A), cohesion (C), friction angle (F), and permeability (P). 

 

In this work, we use a Gaussian process emulator (GPE) to approximate computer experiments with 76 simulator 

runs. The simulator can be represented by a function 𝑓(𝒙)  =  𝒚, where 𝒚 is the observed output and 𝒙 is the 

corresponding input. It is assumed that 𝑓(𝒙) is a smooth, continuous function of its input variables (O’Hagan 

2006) and that the outputs of 𝑓(𝒙) can be modeled as a multivariate normal distribution for any 𝒙. The training 

output 𝒚𝑖  =  𝑓(𝒙𝑖), 𝑖 =  1,2, … , 𝑛 is evaluated at a simulator input 𝒙𝑖, and for any inputs that do not belong to 𝒙𝑖, 

the emulator produces a distribution of interpolated values. Our inputs 𝒙 are slope geometry (angle and height), 

soil shear strength (cohesion and friction angle) and permeability; their ranges are summarized in Table 1. These 

variables were selected due to their importance in assessing the stability of geotechnical infrastructure (Potts et al. 

1997; Ellis and O’Brien 2007; Rouainia et al. 2020). We monitored a number of outputs, including time to failure 

(TTF), failure area, and factor of safety (FOS). Figure 1 illustrates some examples of the FOS curves. Evidently, 

there is a large variation in the starting FOS values, TTF, and noise along the main trend. We deployed a Latin 

hypercube experimental design to ensure an optimal coverage of the parameter space. The computer experiment 

simulator runs were stopped after 184 years of model time, corresponding to the maximum rail cutting slope age 

in the London-Bristol corridor (Skempton 1996). Slopes that have not failed within this time have their TTF and 

failure area censored and are imputed by the GPE as well. 

2 Gaussian Process Emulator 

2.1  Introduction 

A GPE 𝜂(⋅) is a Gaussian process conditioned on observations (i.e. simulator runs) producing an interpolator for 

predictions and uncertainty quantification. This introduction to GPEs is borrowed from our earlier work on 

emulation using Gaussian processes (Svalova et al. 2021). The emulator 𝜂(⋅)  takes a generic input 𝒙 =

(𝑥1, 𝑥2, … , 𝑥𝑝) where 𝑥𝑖 ∈ χi ⊂ ℝ. A Gaussian process is fully defined by its mean and covariance functions 𝑚 

and 𝑉 , 𝜂(⋅) ∼ GP(𝑚(⋅), 𝑉(⋅,⋅)) . Here, 𝑚: ℝ𝑝 → ℝ  is a linear map of the inputs, 𝑚(𝒙) = ℎ(𝒙)𝑇𝜷 , where 

ℎ(⋅): ℝ𝑝 → ℝ𝑞 maps 𝒙 to a vector of linear regressors and 𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑞) is a coefficient vector. We assign 

𝑉(𝒙, 𝒙′) = 𝜏[𝐶(𝑥, 𝑥′, 𝜽) + 𝜖𝕀(𝒙, 𝒙′)] , where 𝜏  is the scale parameter, 𝜖  is a nugget for improving numerical 

stability (Andrianakis and Challenor 2012), and 𝕀 is an indicator function for the event 𝒙 = 𝒙′. The correlation 

function 𝐶 is frequently a Gaussian or a Matérn type (Rasmussen and Williams 2006), and 𝜽 = (𝜃1, 𝜃2, … , 𝜃𝑝) is 

a vector of correlation lengths. 

The analytical expression for a GPE conditioned on a set of runs is defined as follows. Given a collection of 𝑛 

observed experimental outputs 𝒚 = (𝜂(𝒙1), 𝜂(𝒙2), … , 𝜂(𝒙𝑛)), 𝑛 < ∞ performed on the inputs 𝒙1, 𝒙2, … , 𝒙𝑛, the 

𝑛 -vector 𝒚  follows a multivariate normal distribution, 𝒚|𝜷, 𝜏, 𝜽, 𝜖 ∼ 𝑁(𝐻𝑥𝜷, 𝜏Σ𝑥),  where 𝐻𝑥  is a matrix of 

regressors whose 𝑖th row is ℎ(𝒙𝑖) and Σ𝑥(𝑖,𝑗) = 𝐶(𝒙𝑖 , 𝒙𝑗 , 𝜽) + 𝜖𝕀(𝑖, 𝑗). Using standard rules for conditioning on a 

set of observations (Gramacy 2020), 𝜂(⋅)|𝑦, 𝜷, 𝜏, 𝜽, 𝜖 ∼ 𝐺𝑃(𝑚∗(⋅), 𝑉∗(⋅,⋅)), where 

𝑚∗(𝒙) = ℎ(𝒙)𝑇𝜷 + 𝑡(𝒙)𝑇Σ𝑥
−1(𝒚 − 𝐻𝑥𝜷), 𝑉∗(𝒙, 𝒙′) = 𝜏(𝐶(𝒙, 𝒙′, 𝜽) − 𝑡(𝒙)𝑇Σ𝑥

−1𝑡(𝒙′)), 

where 𝑡(𝒙) = (𝐶(𝒙, 𝒙1, 𝜽), 𝐶(𝒙, 𝒙2, 𝜽), … , 𝐶(𝒙, 𝒙𝑛, 𝜽))
𝑇
 is a column vector of correlations between the (generic) 

emulator input 𝒙  and training inputs 𝒙1, 𝒙2, … , 𝒙𝑛 . The above formalism applies to single-output processes, 

however it can be extended to multiple-output problems straightforwardly using multivariate normal theory. 

 

3.2  Censored observations 

Some of the experimental runs have not reached failure in 184 years of model time, thus their time to failure and 

failure area are censored. This is not the case for models which undergo rapid failure resulting in very short time 

series. The censoring occurring in the latter is currently interpreted as failure immediately after construction, and 

modelling time series which have fewer than three FOS measurements are ignored. What follows only applies to 

the censored area and TTF. Suppose 𝑛  experiments at 𝒙𝑜 = (𝒙𝑜,1, 𝒙𝑜,2, … , 𝒙𝑜,𝑛)  produced uncensored 

observations 𝒚𝑜. Also, suppose that 𝑛𝑐 experiments at 𝒙𝑐 = (𝒙𝑜,1, 𝒙𝑜,2, … , 𝒙𝑜,𝑛) produced censored observations, 
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and assume that 𝒚𝑐  is the corresponding vector of (hypothetical) uncensored times to failure. Together with 

𝜷, 𝜎2, 𝜽 and 𝜏, 𝒚𝑐 can also be inferred using the GPE. Define a new process 𝜂𝑐(⋅) where (Kyzyurova 2017) 

𝜂𝑐(𝒙) = {
𝜂(𝒙), if 𝜂(𝒙) < 𝑐,

𝑐, otherwise,
 

where 𝜂(⋅) is as above. Therefore, at design points Χ = (𝒙𝑐 , 𝒙𝑜) 𝜂𝑐(𝒙) is distributed as follows 

𝜂(𝒙𝑜)|𝜷, 𝜎2, 𝜽, 𝜏 ∼ N(𝐻𝑜𝜷, 𝜎2Σ𝑜), 𝜂𝑐(𝒙𝑐)|𝜂(𝒙𝑜), 𝛽, 𝜎2, 𝜽, 𝜏 ∼ TN(𝑐,∞)(𝑚𝑐, 𝑉𝑐), 

𝑚𝑐 = 𝐻𝑐𝜷 + Σ𝑐,𝑜Σ𝑜
−1(𝜂(𝒙𝑜) − 𝐻𝑜𝜷)  and  𝑉𝑐 = 𝜎2(Σ𝑐 − Σ𝑐,𝑜Σ𝑜

−1Σ𝑜,𝑐), 

where TN𝑐,∞ denotes a normal distribution truncated below 𝑐. In the above, 𝐻𝑜 and Σ𝑜 are equivalent to 𝐻𝑥 and 

Σ𝑥 as defined earlier, here using inputs 𝒙𝑜. Similarly, 𝐻𝑐  is a regressor matrix associated with 𝒙𝑐, and Σ𝑐(𝑖,𝑗) =

𝐶(𝒙𝑐,𝑖 , 𝒙𝑐,𝑗 , 𝜽) + 𝜏𝕀(𝑖, 𝑗) and Σ𝑜,𝑐 = Σ𝑐,𝑜
𝑇 . We used the package TruncatedNormal in R (Botev and Belzile 2020) 

to obtain truncated multivariate normal samples. 

 

3.3  Experimental design 

Figure 2. Geometry array of the training data used in our study. The numbers indicate identifiers of the training data runs. 

Adapted from (Svalova, et al. 2021) Supplementary Material. 

 

A set of 76 runs of the geotechnical simulator was created to train the GPE. To obtain an optimal coverage of the 

parameter space we used a Latin hypercube design (LHD) with a maximin criterion (Santner 2018). Table 1 

illustrates the variable ranges used in experimental design, which were chosen to represent railway and highway 

cuttings in high-plasticity soils (Cripps and Taylor 1986). Figure 2 illustrates the geometries which are covered in 

our design, which were chosen based on slope survey data provided by Network Rail and Mott MacDonald. In 

particular, the training run identifiers were sampled in the LHD, and then converted into height and angle. 
 

Property Height (m) Angle cotangent Peak friction (˚) Peak cohesion (kPa) Permeability (m/s) 

Range [4, 20] [0.5, 7.5] [18.5, 25] [3, 10] [1.45×10-9, 2.5×10-8] 

Table 1. Input variables to the computer experiment. 

 

4  Motivating Applications in Slope Stability Analysis 

 

The GPE described above can be applied to a variety of practical scenarios. Here, we have studied cuttings in 

London Clay and applied emulation to estimate TTF, failure area, and FOS. A trained emulator could rapidly 

obtain Bayesian estimates for these deterioration indicators in a matter of seconds for a single earthwork or hours 

for several hundreds of scenarios. This is in contrast to days/weeks of computation time for a single earthwork 

using the original geotechnical simulator. 

 

4.1  Time to failure 

Emulation was applied to TTF observations on 50 out of the 76 simulator runs. The remaining 26 runs did not 

reach failure state within 184 years of model time. Their TTF was, thus, censored and estimated conditionally on 

the observations. An asset’s predicted TTF can be used as a rapid assessment of stability and level of deterioration. 

As TTF is strictly positive, square root of TTF was emulated by assigning it a Gaussian process prior and 

formulating the likelihood on the square root of the TTF observations. 

 

4.2  Failure area 

(1) 
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An algorithm was created that identified the bounds of the failed soil mass and exported the spatial coordinates 

(Fig. 3). As the failure surface in the modelled slopes is dominated by plastic shearing, the algorithm identified 

model zones that were undergoing plastic shear failure and that were also experiencing shear strain rates greater 

than a prescribed minimum. The coordinates of the shear surface were exported from the model and a polynomial 

curve was fitted to the data and the area constrained by the ground surface and the shear surface was calculated 

using numerical integration. Similarly to TTF, the failure area was only observed for the 50 runs that reached 

failure during computation, and the remaining 26 areas were estimated using the emulator. As with TTF, the square 

root of area was emulated by assigning it a Gaussian process prior. 

 

 
Figure 3. Example shear surface extracted from the FLAC model (grey squares) of Run 48 (Fig. 1), python algorithm identifies base of 

surface (blue) and a polynomial is fitted. The area between the shear surface and the ground surface is derived using numerical integration. 

 

4.3  Factor of safety 

Factor of safety is frequently used in design (Matthews et al. 2014), and factor of safety deterioration curves could 

be used in the maintenance and management of infrastructure earthworks and in the design of new build earthworks 

(Postill et al. 2021). To emulate FOS without the high computational expense incurred in the emulation of dynamic 

models we assumed that the exponent of FOS follows linear regression. For a computer run 𝑖 ∈  {1, … , 𝑁}, FOS 

𝑦𝑖,𝑗 changes with time 𝑡𝑖 via the following relation: 

𝑧𝑖,𝑗 = exp{𝑦𝑖,𝑗}  = 𝑒 + 𝛼𝑖  − 𝛾𝑖𝑡𝑖,𝑗 + 𝜀𝑖,𝑗 , 𝜀𝑖,𝑗 ∼  N(0, 𝜎𝑖
2), 𝑗 = 1, … , 𝑛𝑖. 

In the above, the expected value of 𝑧𝑖,𝑗 immediately after construction is at least 𝑒 = exp{1}, E[𝑧𝑖,𝑗|𝑡𝑖,𝑗 = 0] ≥

 exp{1}. Further, 𝛼𝑖  is the initial “distance from failure” and 𝛾𝑖  is the decline rate, 𝑛𝑖  is the number of FOS 

measurements in a run 𝑖. Note that 𝛼𝑖 , 𝛾𝑖 and 𝜎𝑖
2 are strictly positive ∀ 𝑖 and 𝑗. It follows that 𝒛𝑖 = (𝑧𝑖,1, … , 𝑧𝑖,𝑛𝑖

) 

has a Gaussian likelihood 

L(𝛼𝑖 , 𝛾𝑖 , 𝜎𝑖
2|𝒛𝑖 , 𝒕𝑖) ≡  𝑓(𝒛𝑖|𝛼𝑖 , 𝛾𝑖 , 𝜎𝑖

2, 𝒕𝑖) = ∏
1

2𝜋𝜎𝑖
2 

𝑛𝑖

𝑗=1

 exp {−
(𝑧𝑖,𝑗 −  𝑒 − 𝛼𝑖 + 𝛾𝑖𝑡𝑖,𝑗)

2

2𝜎𝑖
2 }. 

Natural logarithms of 𝛼𝑖 , 𝛾𝑖, and 𝜎𝑖
2 are assigned independent Gaussian process priors and then emulated. The 

latter parameters were estimated in one MCMC step together with the remaining model parameters 𝜷, 𝜏, 𝜽, and 𝜖. 

5  Bayesian Parameter Inference 

We use Bayesian inference with Markov chain Monte Carlo simulation (e.g. Brooks et al. 2010) in order to 

obtain parameter uncertainty estimates in the form of posterior distributions. Whilst it is possible to obtain the 

estimates using e.g. numerical optimization, the Bayesian approach allows us to incorporate expert knowledge 

into estimating parameter values. A Metropolis-within-Gibbs sampler was used for 𝜷, 𝜏, 𝜽, and 𝜖, wherease 𝒚𝑐 

was updated using Eq. (1) through a Gibbs step. The code was written in R statistical software (R Core Team 

2021). In the case of TTF and failure area, the coefficients were given prior distributions as follows: 

𝛽0 ∼ N(0,100), 𝛽𝑖 ∼ N(0,16), 𝜃𝑖 ∼ Exp(0.2), 𝜏 ∼ IGa(10,100), 𝜖 ∼ IGa(3,1), 𝑖 = 1,2, … ,5. 
In the case of the FOS modelling, the following priors were used 

𝛽0,𝑝 ∼ N(0,100), 𝛽𝑖,𝑝 ∼ N(0,16), 𝜃𝑖 ∼ Exp(0.2), 𝜏𝑝 ∼ IGa(10,100), 𝜖 ∼ IGa(3,1), 𝑖 = 1,2, … ,5, 𝑝 = 1,2,3. 

We also used log(𝜶) ∼ N(ℎ(𝒙)𝑇𝜷𝟏, 𝜏1Σ𝑥), log(𝜸) ∼ N(ℎ(𝒙)𝑇𝜷𝟐, 𝜏2Σ𝑥),and log (𝝈2) ∼ N(ℎ(𝒙)𝑇𝜷𝟑, 𝜏3Σ𝑥) 

prior distributions, where 𝜶 = (𝛼1, 𝛼2, … , 𝛼𝑛)𝑇 , 𝜸 = (𝛾1, 𝛾2, … , 𝛾𝑛)𝑇, and 𝝈2 = (𝜎1
2, 𝜎2

2, … , 𝜎𝑛
2)𝑇 . 

6  Results 

6.1  Time to failure 

The results regarding MCMC efficiency can be found in our earlier publication (Svalova et al. 2021). Figure 4 

illustrates the posterior distributions of TTF for different soil scenarios. The values increase linearly with angle 

cotangent, which is reasonable as a decrease in slope steepness leads to an increase in TTF. It is also evident 

that TTF is, on average, higher for the high-strength soil example. For the London Clay-type soil, an earthwork 

with a height of 6 m and base of 15 m (angle cotangent of 2.5) has a failure time of 100-150 years. 
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Figure 4. Maps of posterior mean values of TTF versus slope geometry. The legends in the top-left corner of the plots 

show cohesion (C), friction angle (F), and permeability (P). Image adapted from Svalova et al (2021). 

 

6.2  Failure area 

Figure 5. Map of posterior mean values of failure area versus slope geometry. The dots indicate experimental data, 

categorized according to the estimated failure mechanism. 

 

Figure 5 illustrates posterior mean values of the failure area versus slope geometry. Evidently, the change in area 

is more complex than that of TTF. There appears to be a change of behaviour starting from around 8 m slope 

height. We hypothesized that this might be caused by the relationship between failure area and failure type 

(shallow vs deep), thus we categorized failures based on the failure surface geometry. It is evident that with the 

change in failure mechanism, the dependency of failure area on geometry changes. We did not attempt to 

emulate the relationship between failure type and experiment inputs, however this could be a subject of future 

investigation. 
 

6.3  Factor of safety 

Figure 6. Posterior distributions of the FOS, mean values and 95% Bayesian predictive intervals are in dashed lines. 

 

Figure 6 illustrates the posterior distributions of FOS for a selection of simulator runs. It is evident that the 

mean trajectory is covering the general decline in the FOS reasonably well, and the 95% posterior regions 

capture the variation in the majority of cases. The posterior estimates error variance 𝜎𝑖
2 appear to capture the 

spread of the measurements well. However, it might be the case that for e.g. run 14, the proposed exponential 

regression is not concave enough. We will, therefore, be trying different parametric models, as well as  

dynamical modelling, to find one (class of models) that fits most optimally. 
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7 Conclusions 

 

We had developed a GPE of the geotechnical simulator in a Bayesian setting in order to improve computational 

efficiency, whilst providing uncertainty estimates for the parameters controlling our emulator. This emulator 

is suitable for single- and multiple-output scenarios and can be used for a rapid assessment of earthwork 

deterioration state, as well as asset management and maintenance. Whilst, currently, our study only covers 

cuttings in high-plasticity soils that have not undergone interventions, we plan to emulate deterioration of 

earthworks in medium-plasticity soils, embankments, the impact of climate change, and the use of interventions 

(e.g. soil nails). 
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