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Abstract

This paper presents a new method for generating long-sequence wind speed time-series forecasts for purposes of offshore wind
farm asset and operations planning. Our goal is to develop a planning decision support tool with which wind farm planners
and operators can make informed decisions for development and operation of future offshore wind assets considering revenue
and power generation yield, as well as operation and maintenance expenditures.The proposed methodology should be compu-
tationally efficient and should be able to reliably generate accurate wind speed time-series forecasts for the required planning
timescale. In this paper, we used an Autoregressive Moving average model as benchmark to evaluate and compare the perfor-
mance of four different artificial neural network models namely, uni-variate Long-Short Term Memory (LSTM), uni-variate
hybrid one dimensional convolutional neural network with LSTM (1D-CNN-LSTM), multivariate Long-short term memory and
multivariate hybrid 1D-CNN-LSTM architectures. The performance evaluation is delivered through the statistical comparison of
the metrics, RMSE, MAE and MAPE, and the final selection of the outperforming model is supported using Diebold-Mariano
statistic test. Experiments consists of applying different types of pre-processing to the wind speed dataset and the modification
of models’ architecture to include either a batch normalization or a drop-out regularization layer are realized to aid in the selec-
tion of the most suitable model engineering. Results suggest the uni-variate hybrid 1D-CNN-LSTM is able to deliver short-term
prediction for longer timescales while maintaining a suitable degree of accuracy.

1 Introduction

Wind speed prediction is an important task as future resource
projection is used in the power generation estimation for wind
farm planning, maintenance scheduling, operation manage-
ment, energy dispatch scheduling, etc. Moreover, with the rapid
development of higher capacity wind turbines, floating and far
from shore wind farms, the power forecasting is subject to the
changes in different scenarios. Thus, given that wind speed is
proportional to power generation it is of utmost importance to
find suitable models to accurately capture wind speed patterns
and project them over time without compromising computa-
tional resources and preciseness.
Forecasting models can be classified into persistence, phys-
ical and statistical models [1]. The persistence methods are
the most simplistic way to predict wind and have a good
level of accuracy for short-time predictions. Physical models,
also called deterministic[2], are mostly based on numerical
weather prediction methods, well known for their high accu-
racy but they often have higher level of complexity and are
computationally taxing. Statistical methods stand in middle
ground and work on the basis of historical data. Time series
Autoregressive and Artificial Neural Networks (ANNs) fall
into this category. Models such as Autoregressive Moving

Average (ARMA) or Autoregressive Integrated Moving Aver-
age (ARIMA) are among the most classical methods for short
time forecasting and are widely accepted due to their low com-
putational resource requirements. Authors such as [3] used
them to generate short term predictions for either revenue or
power forecasting for longer timescales. O0n the other hand,
the use of neural networks in the wind speed and power fore-
casting has been gaining acceptance due to its capacity to
model complex relations [4]. Among ANN models , Recurrent
Neural Networks (RNNs) and, particularly Long-short Term
Memory (LSTM) Networks have been addressed in the wind
speed and power forecasting field due to their ability to capture
and propagate time series patterns for longer periods of time
[5].

Forecast model performance comparative studies for wind
speed, power and energy in general have been widely addressed
in literature. For example [6] concluded the designed ARMA
model forecast’s MAE was 3.6% smaller than the ANNs mod-
els for ultra short and short- term wind power forecasting
applications, however . The performance of the models is mea-
sured using metrics such as Root Mean Square Error (RMST)
and Mean Absolute Error (MAE). Likewise, in [7] a compar-
ison between the ARMA, ANN and Support Vector Machines
(SVM) is conducted for short-term forecasting of wind speed
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and direction. Comparative studies of hybrid ANN models
are performed by [8, 9] where the forecasts horizons are for
short and long term wind speed and direction, suggesting the
use of hybrid models can increase the accuracy in the predic-
tions. The performance evaluation delivered in these studies are
mostly based on observing the RMSE and MAPE differences
between models, and do not offer stronger evidence on whether
the model outperforms because of the data set randomness or
because is truly predicting accurately [10]. A good way to sup-
port the selection of a forecasting model over others is through
statistical significance tests [11]. For example, [12] proposes
a hybrid Factor Artificial Neural Network model and evalu-
ates its performance against a Dynamic Factor model and an
Autoregressive model, the comparison is based on the RMSE
and Diebold-Mariano (DM) test. In [13] a NARNET models is
proposed and compared against a traditional ARMA and per-
sistence model . The study concludes the most suitable model
for power forecasting based on short-time wind speed predic-
tion is the ANN based on the RMSE and MAE values, however,
the study supports this claim by obtaining the DM statistic for
each model.

This work proposes four different ANN architectures for
wind speed short term forecast for generating longer time
series. These architectures are based on the use of the LSTM
aiming to improve their accuracy by adding a CNN layer before
the LSTM and aiding the forecast by the inclusion of other vari-
ables correlated to the forecast. Thus, the proposed ANN based
models are a univariate LSTM, a univariate hybrid 1-dimension
CNN-LSTM (1D CNN-LSTM), a multivariate LSTM and a
multivariate 1D CNN-LSTM, which are compared against a
classical ARMA(p,q) model and evaluated using the statistical
metrics RMSE, Mean Absolute Error (MAE) and Mean Abso-
lute Percentage Error (MAPE). Furthermore, the competing
model forecasts are evaluated using th DM test for statistical
significance. The predictions are one-hour ahead for sequences
spanning one to two years. In summary, the key contributions
of this paper are:

• Development of the methodology to determine a classic
ARMA(p,q) model and ANN based model based on abla-
tion studies to find the most suitable architecture and pre
process for wind speed data.

• Implementation of hybrid ANN based model for wind speed
prediction and the performance comparison with multivari-
ate versions for long term sequences generation.

• a methodology for statistical performance evaluation of
forecasting models by incorporating the classic statistical
metrics RMSE, MAE and MAPE and the estimation of the
DM statistic as a mean to support the performance of the
model.

2 Forecast Models

2.1 Auto-regressive Moving Average

This model is composed by an autoregressive part (denoted by
AR(p)) which takes the influence of p past values over the cur-
rent value at time t and a moving average (denoted by MA(q))

which is a weighted sum of previous q errors. For time-series
Y an ARMA(p,q) model is described as:

yt =

p∑
i=1

ϕiyt−i + ϵt +

q∑
j=1

θjϵt−j (1)

Where the yt is the actual value of Y at time t, ϕi is the autor-
regresive coefficient, θj is the moving average coefficient and
ϵt is the Gaussian Noise added to the model to represent the
unpredicted component of a time series in nature. The model-
ing can be approached following the Box and Jenkins method-
ology [14] to identify stationarity, estimate the parameters p
and q and evaluate the final result.

2.2 Long-Short Term Memory Neural Network

Recurrent Neural Networks (RNNs) are characterized by the
use of recurrence in every timestamp and the use of backprop-
agation to fine-tune the weights in the neural network. The
LSTM are a type of RNN that incorporates a memory cell
that captures the long-term dependencies and transmit them
for longer periods [15, 16]. The LSTM unit takes as inputs the
values at time t, xt , the previous hidden state ht−1 and the
previous cell state (ct1 ), and passes them through three gates
to filter, retain and transmit important information. First, the
data is passed through a forget gate which computes a bit ten-
sor (using a sigmoid function) to decide what elements of the
input are relevant to be retained and passed to the write gate.
The forget or keep gate can be denoted as 2:

f t
i = σ

(
bfi +

∑
j

U f
i,jx

t
j +

∑
j

W f
i,jh

t−1
j

)
(2)

where bf , U f and W f are the forget gate’s bias, gain and
weights respectively. The write gate receives f t

i and decides
what information is going to be used to write the current cell
memory state ct. This is done using the Tanh non-linearity and
then approximating the result into a bit tensor using a sigmoidal
function (σ), the process is expressed in equation 3.

gt
i = σ

(
bgi +

∑
i

Ug
i,jx

t
j +

∑
i

W g
i,jh

t−1
j

)
(3)

The cell memory state ct will serve as an input for the next
timestamp, it is formed by the addition of the 2 and 3 states as
follows:

cti = f t
i · ct−1

i + gt
iσ(bi

∑
j

Ui,jx
t
j +

∑
j

wi,jh
t−1
i ) (4)

In addition, the current hidden state ht will serve as input for
the next unit, it is obtained by passing ct through the output
gate which consists in a tanh activation function multiplied by
a sigmoid function. The equation describing this process is the
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following:

ht
i = tanh(cti)σ(b

◦
i +

∑
j

U◦
i,jx

t
j +

∑
j

W ◦
i,jh

t−1
j ) (5)

Thus, by updating the memory cell and hidden states the LSTM
can forecast the output variables y = (y1, y2, ...yt).

Fig. 1: Architecture of the LSTM unit and network

The proposed LSTM architecture consist of an input layer
that receives a data sequence of dimension [n,1] , which passes
through a LSTM layer of 64 neurons, 1 dense layer with ReLU
activation function, 1 drop out layer of 0.2, 1 dense layer with
linear activation. The model is trained using ADAM with a
learning rate of 0.001 and RMSE as metric for the loss function.
The figure 1 illustrates the LSTM architecture and process.

2.3 1D-CNN-LSTM

CNNs are widely used in Machine Learning for a variety of
tasks such as image processing or language recognition, its
use in combination with LSTMs has been widely addressed
[17–23] . The term convolution comes from the usage of ker-
nels or filters to extract intrinsic characteristics from the input
data, also known as features. These kernels convolve along the
data set in different directions, thus in the 1D-CNN the kernel
moves only in one direction, which is the time axis for the time
series case. When combined with an LSTM, the 1D-CNN layer
would pass the filtered features to the LSTM units to generate
the prediction [24, 25]. The architecture proposed consists in
one convolutional layer with 32 filters, a kernel size of 3 and
activation function ReLU, followed by a batch normalization
and then an LSTM unit of similar architecture as the one pre-
sented in the previous section. The diagram in figure 2 shows
this layer arrangement, where the input shape is two dimen-
sional since only requires the samples and width of the data
set.

2.4 Multivariate LSTM and 1D-CNN-LSTM

The training data set for this application is expanded to
included the 3 more variables, namely ambient temperature
which contains hourly temperature readings in Celsius degree;
air density which contains hourly readings of air density at
ground level in kg/m3; and cloud cover fraction in a [0,1]
scale. This last variable is valid as is has been shown there is

Fig. 2: Architecture of a multivariate 1D-CNN-LSTM Neural
Network

a correlation between the cloud cover degree and wind speed
[26]. Both architecture will process the input data to mine the
information from the variables and their correlation with the
output to adjust the weights of the numerical model. Thus, both
the multivariate LSTM and the multivariate 1D-CNN-LSTM
can produce forecasts for each of the variables if decided. The
architectures are the same as the univariate models but the input
layer is modified to process the new data set dimension.

3 Methodology

3.1 Dataset

Weather and wind speed data were obtained from global reanal-
ysis models provided by the NASA [27] and extracted using an
open source wind power simulator [28]. Ten years of hourly
wind speed, ambient temperature at 2m above ground, air den-
sity at ground level and cloud cover fraction where collected
from the geographical coordinate (54.9889, 2.22778), which is
a location near the Dogger Bank A offshore wind farm off the
east coast of the UK. Therefore the data set contains 87, 600
wind speed hourly samples which, together with the rest of
the variables, sums up to a total of 438x103 hourly samples.
For the purposes of this investigation, the data set is divided in
three subsets, 7 years are used for training the models, 2 years
are for validation and 1 year for testing the models. The ANN
based models are build using keras with TensorFlow 2.9, and
the experiments were performed using a GPU NVIDIA Tesla
V100, and the ARMA (p,q) model and the proper time series
analysis is generated using Matlab 2022b.

3.2 time series pre-processing for ARMA

Given the nature of wind speed time series it is unlikely the
dataset is stationary, hence in this paper the Augmented Dickey
Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
unit root tests [29] are used to test stationarity of the dataset
time-series. The ADF tests for the presence of a unit root,
thus the time series is stationary ( or can be if a differenti-
ation is applied)if p− value < 0.05. On the other hand, the
KPSS tests for the absence of a unit root, meaning the rejection
of the null hypothesis suggest the time series is not stationary.
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The outcome of both tests applied to the dataset is summarized
in the table 1. Based on these observations, the KPSS statis-
tic fall outside the critical values, thus the null hypothesis is
rejected indicating the time series is not trend-stationary. Since
the p-value for the ADF is smaller than 0.05, it is possible to
reject the null hypothesis and said there is strong evidence the
time series is difference stationary. Following a Box-Jenkins
methodology, an order 1 differentiation was applied to the time
series. The Autocorrelation Function (ACF) and Partial Auto-
correlation Function (PACF) can work as stationarity indicators
as well, the figure 3 show the stem plot of the wind speed with
a 1st degree differentiation, it can be observed both function
gradually decrease until fall inside the significance threshold,
this indicates the time series is stationary.

Based on the ACF/PACF plots given in Fig. 3 applied to the
Dogger Bank dataset an ARMA(4,4) was chosen. The model
was trained, validated and then used to generate sequences of
one-hour ahead forecasts for 1 year.

3.3 Data Pre-Processing for ANN based models

The performance of the model is greatly affected by the pre-
process of the data since the raw data usually contains outlier,
missing values or different scales in the case of multiple vari-
ables. There are two types of data transformations commonly
used in ANNs, the MinMax normalization and the standardiza-
tion. For a time series X the Min-Max scale the data between
0 to 1 as shown in equation 6.

xnorm =
x− xmin

x− xmax

(6)

Table 1 Statistical tests on the wind speed time series.

Test p-value τ -stat cValue
ADF 0.001 -7.067 -1.9416
KPSS 0.01 9.502 0.146

(a) ACF plot

(b) PACF plot

Fig. 3: ACF and PACF plots for the differenced time series

where xmin and xmax are the minimum and maximum val-
ues in the time series respectively. The standardization fits the
time-series data into a distribution of mean zero and standard
deviation of one, x ∈ N(0, 1) as per equation 7.

xstd =
x− E[x]

σ(x)
(7)

This study discusses the accuracy and forecasting error
obtained from applying a determined pre-processing technique
to each ANN model architecture and the proposed ARMA(p,q)
model. The use of pre-process in the ARMA(p,q) would help
to reduce computational processing time of the model more
than the improvement in accuracy since the modeling approach
mentioned in the previous section already contemplates clean-
ing and transformation of the data.

3.4 Ablation Studies

The selection of the ANN architecture with the highest accu-
racy is approached as an optimisation problem where the
objective is to minimize the forecast error, thus, let f̂error be
the difference between the real data and the predicted data
from an architecture characterised by h which is the set of
hyper-parameters in H denoting a hyper-parameter space.

f̂error(h) = min
h∈H

ferror(h) (8)

The set of hyper-parameters used are a combination of a type
of data pre-process with a technique to avoid overfitting, the
pre-processing method applied are Min-Max normalization and
standardization; and the techniques to avoid overfitting are the
batch normalization and dropout regularization.

3.5 Performance comparison and statistical significance tests

In this paper we have used a modified Diebold-Mariano test
first proposed by Harvey, Leybourne and Newbold (HLN) in
1993 to compare the different forecast models [30]. The DM
test works on the grounds of the model residuals and states
that such values are stationary and unbiased. Let f(t) and g(t)
be two different forecast models with errors ef (t) = (y(t)−
ŷ(t)f )

2 and eg(t) = (y(t)− ŷ(t)g)
2 for all t in the set T which

is the set of all timesteps. We define the loss differential func-
tion d(t) = ef (t)− eg(t) for all t and d̂ = µ = E[d] which is
related to the mean absolute error. Both values are used to esti-
mate the autocoraviance at lag k. We define that for any time
series of length n > k > 1,

γk =
1

n

n∑
i=k+1

(di − d̂)(di−k − d̂) (9)

Hence, for a forecast horizon h ≥ 1, the DM statistic is defined
as follows,

DM =
d̂√

[γ0 + 2
∑h−1

k=1 γk](
1
n
)

(10)
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Therefore, it does make sense to state the null hyphotesis as
H0 : E(dt) = 0 ∀t ∈ T meaning that the two forecasts have
the same accuracy, whereas the alternative hypothesis H1 :
E(dt) ̸= 0 would indicate the two models have different lev-
els of accuracy. Under the assumption of null stationarity, the
DM tends to a Normal distributions so it is safe to find the crit-
ical values using a t-statistic distribution where the boundaries
are ±zα/2 and the p-value is estimated as well.

3.6 Evaluation metrics

The indicators used in this paper are the RMSE, MSE, MAE
and MAPE, and are defined by the following equations (∀t ∈
T ):

MSE =

∑n

t=1
(y(t)− ŷ(t))2

n
(11)

RMSE =
√
MSE =

√∑n

t=1(y(t)− ŷ(t))2

n
(12)

MAE =
1

n

n∑
t=1

|y(t)− ŷ(t)| (13)

The MAPE is a measure of quality of the prediction and it is
useful since it scales the relative error units into percentage.
However even though this metric provides a way to measure
the accuracy of a model it is sensible to values close to zero,
therefore, it is used to support the evaluation of the model but
the selection of an architecture or model is not entirely based
on this metric.

MAPE =
1

n

n∑
t=1

|y(t)− ŷ(t)|
|y(t)|

(14)

4 Results and discussions

4.1 Architecture selection

The ablation experiments where done for predictions 12 hours
ahead for 1 year sequence, the table 2 contains the metrics
obtained from each prediction where the values in bold belongs
to the selected architectures. Initially, tests in the ARMA(4,4)
consisted in measuring the error when the data was pre pro-
cessed using either a standardization or a Min-Max normal-
ization. The error from each forecasts differ by 0.5% , being
the Min-Max Normalization data treatment with better MAPE.
Models based on ANN employ techniques known as batch nor-
malization and Dropout regularization to reduce the risk to
overfitting. In the table can be observed that both univariate
and multivariate LSTM architectures including a batch nor-
malization and a Min-Max normalization data pre process are
the ones with the smallest error. Whereas, the batch normal-
ization with a standardization pre process showed to be the
most suitable arrangement for the 1D-CNN-LSTM univariate
and multivariate models.

4.2 Prediction accuracy comparison

Once selected the architecture and pre-process most suitable
for each model,different sequences are generated to measure

Table 2 Statistical metrics from different architectures
and pre-process applied.

Standardization Min-Max Normalization
Metric Batch drop-out Batch drop-out

normalization 0.2 normalization 0.2
ARMA(4,4)
RMSE 2.925 2.910
MAE 2.271 2.257
MAPE 0.285 0.281
LSTM
RMSE 0.275 0.487 0.274 0.505
MAE 0.183 0.381 0.177 0.405
MAPE 0.022 0.050 0.021 0.055
1D -CNN-LSTM
RMSE 0.272 0.393 0.324 0.395
MAE 00.176 0.294 0.232 0.293
MAPE 0.02 0.040 0.025 0.036
Multivariate LSTM
RMSE 2.923 2.963 0.439 2.037
MAE 2.134 2.256 0.330 1.593
MAPE 0.345 0.356 0.044 0.217
Multivariate 1D-CNN-LSTM
RMSE 0.280 0.784 0.454 1.729
MAE 0.185 0.618 0.327 1.363
MAPE 0.021 0.084 0.038 0.198

the accuracy decay in the predictions. A similar compara-
tive experiment as the previous section is performed for the
12, 24 and 48 hours forecast horizons and 1 and 2 year
sequences, the results are reported in the table 3. Both multi-
variate models forecast errors are bigger than their univariate
counterparts, even for longer forecast horizons, this behaviour
can be attributed to the ANNs capacity to handle bigger data
sets. The hybrid 1D-CNN-LSTM produced the least errors for
all the time horizons and both sequence lengths,this shows the
addition of the CNN layer can indeed improve the predictions.
Finally, the ARMA(4,4) model output error for horizons of
12 hours for both 1 and 2 year sequences still fall into the
acceptable, but this is not the case for larger horizons.

4.3 Significance tests, Diebold-Mariano

For practical purposes, the DM statistic was calculated for the
univariate 1D-CNN-LSTM forecast against the ARMA(4,4),
univariate LSTM and multivariate models, results are reported
in table 4. In general, DM tests for the null hypothesis H0 of
the two methods have the same accuracy, and the alternative
hypothesis H1 is that the two forecasts have different levels of
accuracy. Therefore, in the table 4 can be seen that for almost
all cases the H0 hypothesis can be rejected in favor of the alter-
native, meaning there is strong evidence the hybrid univariate
1D-CNN-LSTM model outperforms in the majority of cases.

5 Conclusion

The performance evaluation of four ANNs based models for
wind speed forecasting was presented. The univariate hybrid
1D-CNN-LSTM model yielded the lowest error and higher
accuracy for all prediction horizons closely followed by the
univariate LSTM, which based on the DM test observations,
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Table 3 Statistical metrics from different time horizons
and pre-process applied.

1 year 2 years
Metrics 12h 24h 48h 12h 24h 48h
ARMA(4,4)
RMSE 2.911 3.483 3.741 2.909 3.415 3.603
MAE 2.258 2.748 2.979 2.228 2.677 2.845
MAPE 0.281 0.351 0.383 0.275 0.341 0.365
LSTM
RMSE 0.274 0.516 0.274 0.279 0.988 0.282
MAE 0.177 0.457 0.170 0.179 0.739 0.176
MAPE 0.021 0.054 0.019 0.021 0.086 0.019
1D -CNN-LSTM
RMSE 0.272 0.281 0.269 0.275 0.946 0.277
MAE 0.176 0.181 0.171 0.174 0.686 0.177
MAPE 0.020 0.020 0.019 0.020 0.79 0.019
Multivariate LSTM
RMSE 0.439 0.822 2.926 0.911 1.124 1.241
MAE 0.330 0.620 2.147 0.685 0.842 1.150
MAPE 0.044 0.086 0.347 0.091 0.103 0.121
Multivariate 1D-CNN-LSTM
RMSE 0.280 0.281 0.283 0.318 0.947 0.294
MAE 0.185 0.185 0.080 0.225 0.681 0.196
MAPE 0.021 0.021 0.022 0.025 0.079 0.022

Table 4 P-values for each DM statistic for model predictions

Model 1 year 2 years
DM p DM p
statistic −value statistic −value

12 h-steps-ahead
1DCNNLSTM vs ARMA −19.014 < 0.01 −25.0455 < 0.01
1DCNNLSTM vs LSTM −0.733 0.463 −1.527 0.126
1DCNNLSTM vs M-LSTM −16.712 < 0.01 −17.313 < 0.01
1DCNNLSTM vs M-1DCNNLSTM −3.717 < 0.01 −14.921 < 0.01
24 h-steps-ahead
1DCNNLSTM vs ARMA −16.264 < 0.01 −21.136 < 0.01
1DCNNLSTM vs LSTM −65.986 < 0.01 −10.172 < 0.01
1DCNNLSTM vs M-LSTM −9.872 < 0.01 −9.702 < 0.01
1DCNNLSTM vs M-1DCNNLSTM −0.207 0.834 −0.004 0.996
48 h-steps-ahead
1DCNNLSTM vs ARMA −13.243 < 0.01 −18.067 < 0.01
1DCNNLSTM vs LSTM −2.249 0.0244 −2.404 0.0162
1DCNNLSTM vs M-LSTM −12.470 < 0.01 −46.749 < 0.01
1DCNNLSTM vs M-1DCNNLSTM −4.769 < 0.01 −7.111 < 0.01

both models hold equal accuracy in certain scenarios. Never-
theless, taking into account the combination of the statistical
metrics and significance test outcome, it can be said the univari-
ate 1D-CNN-LSTM model outperformed among the proposed
wind speed forecasting models. Furthermore, the election of
this particular architecture and modeling technique is based
on the performance evaluation of different modelling set up
combinations, which consisted in using a determined pre-
processing ( classic standardization or a Min-Max Normaliza-
tion) and architectures including either a batch normalization
or a drop-out regularization. Contrary to the expectations about
any multivariate model performing better than their univariate
counterparts, it was observed both univariate models produced
better forecasts. This can be attributed to the fact both mul-
tivariate models are shallow or lack of capability to properly
handle the size of the data set. Nonetheless, all set up combi-
nations for the multivariate proposed architectures performed

better than the ARMA(4,4) in all prediction scenarios. Future
work will focus on the incorporation of variables correlation
index in the data set construction and the integration of more
hidden layers to increase the multivariate models depth with the
expectation of sharpening their forecast accuracy. Additionally,
the statistical performance comparison can be applied in wind
power and energy forecasting, including a sensitivity analysis
as a measure of the uncertainty in the elected model.
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