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Abstract— Computed tomography (CT) is an effective med-
ical imaging modality, widely used in the field of clinical
medicine for the diagnosis of various pathologies. Advances in
Multidetector CT imaging technology have enabled additional
functionalities, including generation of thin slice multiplanar
cross-sectional body imaging and 3D reconstructions. However,
this involves patients being exposed to a considerable dose
of ionising radiation. Excessive ionising radiation can lead to
deterministic and harmful effects on the body. This paper
proposes a Deep Learning model that learns to reconstruct
CT projections from a few or even a single-view X-ray. This is
based on a novel architecture that builds from neural radiance
fields, which learns a continuous representation of CT scans by
disentangling the shape and volumetric depth of surface and
internal anatomical structures from 2D images. Our model is
trained on chest and knee datasets, and we demonstrate qual-
itative and quantitative high-fidelity renderings and compare
our approach to other recent radiance field-based methods.
Our code and link to our datasets are available at https:
//github.com/abrilcf/mednerf

Clinical relevance— Our model is able to infer the anatomical
3D structure from a few or a single-view X-ray, showing future
potential for reduced ionising radiation exposure during the
imaging process.

I. INTRODUCTION

3D medical imaging often involves joining multiple 2D
slices from CT or Magnetic Resonance Imaging (MRI), and
part of their workflow consists of specifying values for the
position of the patient, the imaging source, and the detector.
The quality and accuracy of a CT 3D representation require
hundreds of X-ray projections with a thin slice thickness
[1]. Moreover, this process exposes patients to more ionising
radiation than typical X-rays and requires the patient to
remain immobile for up to more than 1 hour, depending on
the type of test [2]. Continuous 3D representations would
give radiologists optics of every point in the internal anatomy
captured. While such representations are useful, there are
practical challenges in CT due to the increased radiation
exposure, angle-dependent structures, and time consumption
[3].

Earlier approaches in medical image reconstruction used
analytic and iterative methods [4], [5] on given input data.
However, they often encounter mismatches between the
mathematical model and physical properties of the imaging
system. Instead, several recent approaches leverage deep
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learning [6] for sparse view reconstruction [7], [8], [9],
3D CT reconstruction from 2D images [10], and anomaly
detection [11]. These deep learning approaches solved the
mismatches between the mathematical model and imaging
system and reported improved reconstructions by fine-tuning
state-of-the-art architectures. However, they require a large
amount of training data, which may be difficult to meet in
the medical domain where acquiring expert annotations is
both cost and time prohibitive.

The Neural Radiance Fields (NeRF) [12] model is a
recent reformulation for estimating a 3D volumetric rep-
resentation from images. Such representations encode the
radiance field and density of the scene in the parameters
of a neural network. The neural network learns to synthesize
new views via volume rendering from point samples along
cast rays. However, these representations are often captured
in controlled settings [13]. First, the scene is taken by a
set of fixed cameras within a short time frame. Second, all
content in the scene is static and real images often need
masking. These constraints prohibit the direct application of
NeRF to the medical domain, where the imaging system
greatly differs from conventional cameras, and the images
are captured over a long time frame hampering the patient’s
stillness. Moreover, the overlapping of anatomical structures
in medical images hinders the definition of edges which
cannot be easily solved with masking. These aspects explain
why the NeRF approach especially shows successes for
“natural images”.

To address these challenges, we propose MedNeRF, a
model that adapts Generative Radiance Fields (GRAF) [14]
in the medical domain to render CT projections given a few
or even a single-view X-ray. Our approach not only synthe-
sizes realistic images, but also capture the data manifold and
provides a continuous representation of how the attenuation
and volumetric depth of anatomical structures vary with the
viewpoint without 3D supervision. This is achieved via a
new discriminator architecture that provides a stronger and
more comprehensive signal to GRAF when dealing with CT
scans.

Closest to our goal are [8], [9], which both train a
coordinate-based network in sinograms of low-dose CT of
phantom objects and apply it to the sparse-view tomography
reconstruction problem. In contrast to [8], we learn multiple
representations in a single model by randomly feeding data of
different medical instances instead of separately optimizing
for each collection of images. For testing [9] reconstruction
ability, they integrate it into reconstruction methods and use

https://github.com/abrilcf/mednerf
https://github.com/abrilcf/mednerf


at least 60 views. Different from their methods, we do not
rely on additional reconstruction algorithms, and we only
require multiple views during training.

We render CT projections of our two datasets of digitally
reconstructed radiographs (DRR) from chest and knee. We
qualitative and quantitative demonstrate high-fidelity render-
ings and compare our approach to other recent radiance
field-based methods. Furthermore, we render CT projections
of a medical instance given a single-view X-ray and show
the effectiveness of our model to cover surface and internal
structures.

II. METHODS

A. Dataset Preparation

To train our models, we generate DRRs instead of col-
lecting paired X-rays and corresponding CT reconstructions,
which would expose patients to more radiation. Furthermore,
DRR generation removes patient data and enables control
in capture ranges and resolutions. We generated DRRs by
using 20 CT chest scans from [15], [16] and five CT knee
scans from [17], [18]. These scans cover a diverse group of
patients at different contrast types showing both normal and
abnormal anatomy. The radiation source and imaging panel
are assumed to rotate around the vertical-axis, generating a
DRR of 128×128 resolution at every five degrees, resulting
in 72 DRRs for each object. During training we use the whole
set of 72 DRRs (a fifth of all views within a full 360-degree
vertical rotation) per patient and let the model render the rest.
Our work did not involve experimental procedures on human
subjects or animals and thus did not require Institutional
Review Board approval.

B. GRAF Overview

GRAF [14] is a model that builds from NeRF and defines
it within an Generative Adversarial Network (GAN). It
consists of a generator Gθ that predicts an image patch
P pred and a discriminator Dϕ that compares the predicted
patch to a patch P real extracted from a real image. GRAF
has shown an effective capacity to disentangle 3D shape and
viewpoint of objects from 2D images alone, in contrast to
the original NeRF [12] and similar approaches such as [19].
Therefore, we aim to translate GRAF’s methods to our task,
and in subsection II-C we describe our new discriminator
architecture, which allows us to disentangle 3D properties
from DRRs.

We consider the experimental setting to obtain the radia-
tion attenuation response instead of the color used in natural
images. To obtain the attenuation response at a pixel location
for an arbitrary projection K with pose ξ, first, we consider
a pattern ν = (u, s) to sample R X-ray beams within a
K ×K image-patch P . Then, we sample N 3D points xi

r

along the X-ray beam r originating from the pixel location
and ordered between the near and far planes of the projection
(Fig. 1a).

The object representation is encoded in a multi-layer
perceptron (MLP) that takes as input a 3D position x =
(x, y, z) and a viewing direction d = (θ, ϕ), and produces
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Fig. 1. An overview of GRAF’s generator.

as output a density scalar σ and a pixel value c. To learn
high-frequency features, the input is mapped into a 2L-
dimensional representation (Fig. 1b):

γ(p) = ..., cos(2jπp), sin(2jπp), ... (1)

where p represents the 3D position or viewing direction, for
j = 0, ...,m− 1.

For modeling the shape and appearance of anatomical
structures, let zs ∼ ps and za ∼ pa be the latent codes
sampled from a standard Gaussian distribution, respectively
(Fig. 1c). To obtain the density prediction σ, the shape
encoding q is transformed to volume density through a
density head σθ. Then, the network gθ(·) operates on a shape
encoding q = (γ(x), zs) that is later concatenated with the
positional encoding of d and appearance code za (Fig. 1c):

(γ(x), zs) 7→ q (2)
(q(x, zs), γ(d), za) 7→ c (3)

q(x, zs) 7→ σ (4)

The final pixel response cr is computed by the compositing
operation (Fig. 1c):

cr =

N∑
i=1

cirα
i
r exp (−

i−1∑
j=1

σj
rδ

j
r) (5)

where αi
r = 1− exp (−σi

rδ
i
r) is the alpha compositing value

of sampled point i and δir =∥ xi+1
r − xi

r ∥2 is the distance
between the adjacent sampled points.

In this way, both the density and pixel values are computed
at each sampled point along the beam r with network gθ.
Finally, combining the results of all R beams, the generator
Gθ predicts an image patch P pred, as illustrated in Fig. 1d.

C. MedNeRF

We investigate how we can adapt GRAF to the medical
domain and apply it to render a volumetric representation
from DRRs. Leveraging a large dataset, GRAF’s discrimi-
nator Dϕ is able to continuously provide useful signals to
train the generator Gθ. However, medical datasets like those
considered in our problem are generally small, which causes
two sequential issues:
The lack of real information to the generator: In GRAF
(and in GAN in general), the only source of features of



the training data contributing to the generator is the indirect
gradient transferred from the discriminator. We find that the
single convolutional feedback from GRAF’s discriminator
poorly conveys refined features from DRRs resulting in
inaccurate volumetric estimation.
Brittle adversarial training: With a limited training dataset,
the generator or discriminator may fall into ill-posed settings
such as mode collapse, which would lead to generating a
limited number of instances and consequently, a suboptimal
data distribution estimation. While some works have applied
data augmentation techniques to leverage more data in the
medical domain, some transformations could mislead the
generator to learn the infrequent or even non-existent aug-
mented data distribution [20]. We find that naively applying
classic data augmentation works less favorably than our
adopted framework.

1) Self-supervised Learning for High-Fidelity Synthesis:
To allow richer feature-maps covering from the DRRs such
that it produces more comprehensive signals to train Gθ,
we replace GRAF’s discriminator architecture with recent
advancements in self-supervised approaches. We allow Dϕ

to learn useful global and local features training it on a
pretext task, in particular, the self-supervision method based
on auto-encoding [21]. Different from [21], we only use
two decoders for the feature-maps on scales: f1 on 322

and f2 on 82 (Fig. 2a). We find that this choice allows
better performance and enables a correct volumetric depth
estimation. Dϕ must therefore not only discriminate P pred
predicted from Gθ but also extract comprehensive features
from real image patches P real that enable the decoders to
resemble the data distribution.

To assess global structure in decoded patches from Dϕ, we
use the Learned Perceptual Image Patch Similarity (LPIPS)
metric [22]. We compute the weighted pairwise image
distance between two VGG16 feature spaces, where the
pretrained weights are fit to better match human perceptual
judgments. The additional discriminator loss is therefore:

Lr = Ef∼D(p),p∼P

[
1

whd
∥ ϕi(G(f))− ϕi(T (p)) ∥2

]
(6)

where ϕi(·) denotes the ith layer output of a pretrained
VGG16 network, and w, h, and d stand for the width, height
and depth of a feature space, respectively. Let G be the
processing on the intermediate feature-maps f from Dϕ,
and T the processing on real image patches. When coupled
with this additional reconstruction loss, the network learns
representations that transfer across tasks.

2) Improving Learning via Data Augmentation:
We improve learning of Gθ and Dϕ by adopting the

Data Augmentation Optimized for GAN (DAG) framework
[20] in which a data augmentation transformation Tk (Fig.
2b) is applied using multiple discriminator heads {Dk}.
To further reduce memory usage, we share all layers of
Dϕ except the last layers corresponding to each head (Fig.
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Fig. 2. An overview of our discriminator with self-supervised learning and
DAG.

2c). Because applying differentiable and invertible data aug-
mentation transformations Tk has the Jenssen-Shannon (JS)
preserving property [20]:

JS(pTk

d ∥ pTk
g ) = JS(pd ∥ pg) (7)

where pTk

d is the transformed training data distribution and
pTk
g the transformed distribution captured by Gθ. By using a

total of four transformations combining flipping and rotation,
we encourage optimization to the original data distribution,
which also brings the most performance boost. These choices
allow our model to benefit from not only JS(pd ∥ pg) but
also JS(pTk

d ∥ pTk
g ), thereby improving the learning of Gθ and

generalization of Dϕ. Furthermore, using multiple discrim-
inators with weight-sharing provides learning regularization
of Dϕ.

Replacing GRAF’s logistic objective with a hinge loss, we
then define our overall loss as below:

L(θ, {ϕk}) = L(θ, ϕ0) +
λ

n− 1

n∑
k=1

L(θ, ϕk) (8)

L(θ, ϕk) =

Ezs∼ps,za∼pa,ξ∼pξ,ν∼pν
[f(Dϕ(Gθ(zs, za, ξ,ν)))]

+ EI∼pD,ν∼pν
[f(−Dϕ(I,ν))] + Lr

(9)

where f(u) = max(0, 1+u). We optimize this loss with n =
4, where k = 0 corresponds to the identity transformation
and λ = 0.2 (as in [20]).

3) Volumetric Rendering from a Single View X-ray:
After training a model, we reconstruct the complete X-

ray projections within a full vertical rotation of a medical
instance given a single view X-ray. We follow the relaxed
reconstruction formulation in [23], which fits the generator
to a single image. Then, we allow the parameters of the
generator Gθ to be slightly fine-tuned along with the shape
and appearance latent vectors zs and za. The distortion and
perception tradeoff is well known in GAN methods [24] and
therefore we modify our generation objective by adding the
distortion Mean Square Error (MSE) loss, which incentivises
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Fig. 3. Knee renderings from continuous viewpoint rotations showing tissue and bone. Given a single-view X-ray from a CT, we can generate the complete
set of CT-projections within a full vertical rotation by slightly fine-tuning a pretrained model along with the shape and appearance latent codes.

TABLE I. Quantitative results based on PSNR and SSIM of rendered
X-ray projections with single-view X-ray input.

Dataset ↑ PSNR (dB) (µ± σ) ↑ SSIM (µ± σ)
Knee 30.17± 1.93 0.670± 0.040
Chest 28.54± 0.79 0.462± 0.082

a balance between blurriness and accuracy:

Lgen = λ1Lr(V GG16) + λ2LMSE(G) + λ3LNLLL(zs, za)
(10)

where NLLL corresponds to the negative log-likelihood loss
and the tuned hyperparameters lr = 0.0005, β1 = 0, β2 =
0.999, λ1 = 0.3, λ2 = 0.1 and λ3 = 0.3.

Once the model locates an optimal combination of zs and
za, we replicate them and use them to render the rest of
the X-ray projections by continuously controlling the angle
viewpoint.

III. RESULTS

Here we provide an evaluation of MedNeRF on our
datasets. We compare our model’s results to the ground
truth, two baselines, perform an ablation study, and show
qualitative and quantitative evaluations. We train all models
for 100,000 iterations with a batch size of 8. Projection
parameters (u, v) are chosen to evenly sample points on the
surface of a sphere, specifically a slight horizontal elevation
of 70-85 degrees and umin = 0, umax = 1 for a full 360-
degree vertical rotation. However, we only provide a fifth of
the views (72-views each at five degrees) during training and
let the model render the rest.

A. Reconstruction from Single View X-ray

We evaluate our model’s representation for 3D-aware DRR
synthesis given a single-view X-ray as input. We find that
despite the implicit linear network’s limited capacity, our
model can disentangle 3D anatomy identity and attenuation
response of different medical instances, which are retrieved
through the described reconstruction reformulation in II-C.3.
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Fig. 4. Volumetric maps and attenuation renderings on our dataset.

Our model can also facilitate distinguishing bone from tissue
via a contrast transformation, as it renders a brighter pixel
value for denser structures (e.g. bone) (Fig. 3).

Table I summarises our results based on the peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM), which
measure the quality of reconstructed signals and human
subjective similarity, respectively. We find that our generative
loss can achieve a reasonable perception-distortion curve
in renderings and show consistency with the location and
volumetric depth of anatomical structures at continuous
viewpoints compared to the ground truth.

B. 2D DRR Rendering

We evaluate our model on the task of 2D rendering and
compare it to pixelNeRF [19], and GRAF [14] baseline,
wherein the original architecture is used. Our model can
more accurately estimate volumetric depth compared to



TABLE II. FID and KID analysis comparing other methods.

Chest dataset Knee dataset
Method ↓ FID (µ± σ) ↓ KID (µ± σ) ↓ FID (µ± σ) ↓ KID (µ± σ)

GRAF [14] 68.25± 0.954 0.053± 0.0008 76.70± 0.302 0.058± 0.0001
pixelNeRF [19] 112.96± 2.356 0.084± 0.0012 166.40± 2.153 0.158± 0.0010

Ours 60.26± 0.322 0.041± 0.0005 76.12± 0.193 0.052± 0.0004

TABLE III. FID and KID analysis of ablations of our model.

Chest dataset
Ablation ↓ FID (µ± σ) ↓ KID (µ± σ)

MedNeRF - 3 SD, logistic loss, classic DA 84.85± 1.025 0.069± 0.0031
MedNeRF - 2 SD, logistic loss, classic DA 67.73± 0.712 0.051± 0.0006

MedNeRF - 2 SD, hinge loss, classic DA 65.34± 0.353 0.045± 0.0004
MedNeRF - 2 SD, hinge loss, DAG 60.26± 0.322 0.041± 0.0005

GRAF and pixelNeRF (Fig. 4). For each category, we find
an unseen target instance with a similar view direction
and shape. Volumetric depth estimation is given by bright
colors (far) and dark colors (near). Lacking a perceptual
loss, GRAF is not incentivized to produce high-frequency
textures. In contrast, we find our model renders a more
detailed internal structure with varied attenuation. GRAF
produces a consistent attenuation response, but seems to
be unable to distinguish the anatomical shape from the
background. Our self-supervised discriminator enables the
generator to disentangle shape and background by rendering
a brighter color for the background and a darker color for
the shape, while GRAF renders a bright or dark color for
both.

We find pixelNeRF produces blurred attenuation render-
ings for all datasets, and volumetric maps tend to exhibit
strong color shifts (Fig. 4). We believe these artifacts are due
to the see-through nature of the dataset, compared to solid-
like natural objects on which NeRFs are trained. This data
characteristic impairs not only volumetric maps but also fine
anatomical structures. In contrast, our model is better able
to render both volumetric depth and attenuation response.
We also find pixelNeRF is sensitive to slight changes in
projection parameters, hampering optimization for the knee
category. Our model produces a consistent 3D geometry and
does not rely on explicit projection matrices.

Table II compares image quality based on Frechet Incep-
tion Distance (FID) and Kernel Inception Distance (KID)
metrics, in which lower values mean better. Optimizing
pixelNeRF on our datasets leads to particularly poor results
that are unable to compete with the GRAF baseline and our
model. In contrast, our model outperforms the baselines on
FID and KID metrics for all datasets.

C. Ablation Study

We evaluate our model with three ablations (Table III):
wherein an additional simple decoder (SD) is included; the
adversarial logistic loss is replaced by its hinge version; and
wherein the non-classical DAG approach is adopted. We find
that that the DAG approach brings the most performance
boost compared to naively applying classical DA, while
the use of a hinge loss performs slightly better than its
logistic version. However, an additional decoder in our self-
supervised discriminator can lead to a significant drop in

performance.

IV. CONCLUSION

We have presented a novel Deep Learning architecture
based on Neural Radiance Fields for learning a continuous
representation of CT scans. We learn a medical category
encoding of the attenuation response of a set of 2D DRRs
in the weights of a generator. Furthermore, we have found
that a stronger and more comprehensive signal from our
discriminator allows generative radiance fields to model 3D-
aware CT-projections. Experimental evaluation demonstrates
significant qualitative and quantitative reconstructions and
improvements over other Neural Radiance Field approaches.
Whilst the proposed model may not replace CT entirely, the
functionality of generating 3D-aware CT-projections from X-
rays has great potential for clinical use in osseous trauma,
skeletal evaluation in dysplasia and for orthopaedic pre-
surgical planning. This could cut down on the radiation dose
given to patients, with significant economic implications such
as bringing down the cost of investigations.
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