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Abstract

Neural Radiance Fields (NeRF) have attracted significant
attention due to their ability to synthesize novel scene views
with great accuracy. However, inherent to their underly-
ing formulation, the sampling of points along a ray with
zero width may result in ambiguous representations that
lead to further rendering artifacts such as aliasing in the
final scene. To address this issue, the recent variant mip-
NeRF proposes an Integrated Positional Encoding (IPE)
based on a conical view frustum. Although this is expressed
with an integral formulation, mip-NeRF instead approxi-
mates this integral as the expected value of a multivariate
Gaussian distribution. This approximation is reliable for
short frustums but degrades with highly elongated regions,
which arises when dealing with distant scene objects un-
der a larger depth of field. In this paper, we explore the
use of an exact approach for calculating the IPE by using
a pyramid-based integral formulation instead of an approx-
imated conical-based one. We denote this formulation as
Exact-NeRF and contribute the first approach to offer a pre-
cise analytical solution to the IPE within the NeRF domain.
Our exploratory work illustrates that such an exact formula-
tion (Exact-NeRF) matches the accuracy of mip-NeRF and
furthermore provides a natural extension to more challeng-
ing scenarios without further modification, such as in the
case of unbounded scenes. Our contribution aims to both
address the hitherto unexplored issues of frustum approx-
imation in earlier NeRF work and additionally provide in-
sight into the potential future consideration of analytical so-
lutions in future NeRF extensions.

1. Introduction

Novel view synthesis is a classical and long-standing task
in computer vision that has been thoroughly re-investigated
via recent work on Neural Radiance Fields (NeRF) [20].
NeRF learns an implicit representation of a 3D scene from
a set of 2D images via a Multi-Layer Perceptron (MLP) that
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Figure 1. Comparison of Exact-NeRF (ours) with mip-NeRF 360
[2]. Our method is able to both match the performance and obtain
superior depth estimation over a larger depth of field.

predicts the visual properties of 3D points uniformly sam-
pled along the viewing ray given its coordinates and view-
ing direction. This parameterization gives NeRF the dual
ability to both represent 3D scenes and synthesize unseen
views. In its original formulation, NeRF illustrates strong
reconstruction performance for synthetic datasets compris-
ing object-centric scenes and no background (bounded)
and forward-facing real-world scenes. Among its appli-
cations, NeRF has been used for urban scene representa-
tion [25,27,29], human body reconstruction [3, 16], image
processing [12, 17, 19] and physics [9, 14].

Nonetheless, the underlying sparse representation of 3D
points learnt by the MLP may cause ambiguities that can
lead to aliasing and blurring. To overcome these issues,
Barron et al. proposed mip-NeRF [1], an architecture that
uses cone tracing instead of rays. This architecture en-
codes conical frustums as the inputs of the MLP by ap-
proximating the integral of a sine/cosine function over a
region in the space with a multivariate Gaussian. This re-
parameterization notably increases the reconstruction qual-
ity of multi-scale datasets. However, this approximation is
only really valid for bounded scenes, where the conic frus-
tums do not suffer from large elongations attributable to a
large depth of field within the scene.



The NeRF concept has been extended to represent in-
creasingly difficult scenes. For instance, mip-NeRF 360 [2]
learns a representation of unbounded scenes with a cen-
tral object by giving more capacity to points that are near
the camera, modifying the network architecture and intro-
ducing a regularizer that penalizes ‘floaters’ (unconnected
depth regions in free space) and other small unconnected
regions. In order to model distant regions, mip-NeRF
360 transforms the multivariate Gaussians with a contrac-
tion function. This modification allows a better representa-
tion and outperforms standard mip-NeRF for an unbounded
scenes dataset. However, the modification of the Gaussians
requires attentive analysis to encode the correct information
in the contracted space, which includes the linearization of
the contraction function to accommodate the Gaussian ap-
proximations. This leads to a degraded performance of mip-
NeRF 360 when the camera is far from the object. Addition-
ally, mip-NeRF 360 struggles to render thin structures such
as tree branches or bicycle rays.

Motivated by this, we present Exact-NeRF as an explo-
ration of an alternative exact parameterization of underly-
ing volumetric regions that are used in the context of mip-
NeRF (Fig. 1). We propose a closed-form volumetric po-
sitional encoding formulation (Sec. 3) based on pyrami-
dal frustums instead of the multivariate Gaussian approx-
imation used by mip-NeRF and mip-NeRF 360. Exact-
NeRF matches the performance of mip-NeRF on a synthetic
dataset, but gets a sharper reconstruction around edges. Our
approach can be applied without further modification to the
contracted space of mip-NeRF 360. Our naive implementa-
tion of Exact-NeRF for the unbounded scenes of mip-NeRF
360 has a small decrease in performance, but it is able to
get cleaner reconstructions of the background. Addition-
ally, the depth map estimations obtained by Exact-NeRF
are less noisy than mip-NeRF 360. Our key contribution
is the formulation of a general integrated positional encod-
ing framework that can be applied to any shape that can
be broken into triangles (i.e., a polyhedron). We intend
that our work serves as a motivation to investigate differ-
ent shapes and analytical solutions of volumetric positional
encoding. The code is available at https://github.
com/KostadinovShalon/exact—nerf.

2. Related Work

Already numerous work has focused on improving NeRF
since its original inception [20], such as decreasing
the training time [5, 6, 8, 11, 30], increasing the synthesis
speed [10,26,31], reducing the number of input images [23]
and improving the rendering quality [1, 2, 15, 18, 28, 32].
With the latter, one of the focuses is to change the positional
encoding to account for the volumetric nature of the regions
that contribute to pixel rendering [1, 2].

2.1. Positional Encoding

NeRF uses a positional encoding (PE) on the raw coordi-
nates of the input points in order to induce the network to
learn higher-frequency features [24]. However, the sam-
pled points in NeRF are intended to represent a region in
the volumetric space. This can lead to ambiguities that may
cause aliasing. In this sense, mip-NeRF [1] uses a volumet-
ric rendering by casting cones instead of rays, changing the
input of the MLP from points to cone frustums. These re-
gions are encoded using an integrated positional encoding
(IPE), which aims to integrate the PE over the cone frus-
tums. Given that the associated integral has no closed-form
solution, they formulate the IPE as the expected value of the
positional encoding in a 3D Gaussian distribution centred in
the frustum. The IPE reduces aliasing by reducing the am-
biguity of single-point encoding. Mip-NeRF 360 [2] uses a
contracted space representation to extend the mip-NeRF pa-
rameterization to 360° unbounded scenes, since they found
that the approximation given in mip-NeRF degrades for
elongated frustums which arise in the background. Addi-
tionally, and similar to DONeRF [22], mip-NeRF 360 sam-
ples the intervals of the volumetric regions using the inverse
of the distance in order to assign a bigger capacity to nearer
objects. By contrast, in this work we explore the use of
pyramid-based frustums in order to enable an exact inte-
gral formulation of the IPE which can be applied for both
bounded and unbounded scenes alike.

2.2. NeRF and Mip-NeRF parameterization

NeRF uses an MLP f with parameters © to get the colour
¢ € R? and density o € [0, +00) given a point x € R? and
a viewing direction v € S?, where S? is the unit sphere,
such that:

(c,0) = f(x,¥;0), (M

whereby NeRF uses the positional encoding

v(x) = [sin(20x), . ,sin(QL_lx), 5
cos(2%x), ..., cos(2"'x)] i , @

and v : R — R2?L is applied to each coordinate of x and
each component of v independently. The sampling strat-
egy of NeRF consists of sampling random points along the
ray that passes through a pixel. This ray is represented by
r(t) = td + o, where o is the camera position and d is
the vector that goes from the camera centre to the pixel in
the image plane. The ray is divided into N intervals and
the points r(¢;) are drawn from a uniform distribution over
each interval, such that:

i—1 i
timo U |ty + ———(tr — o)ty + —(tr —t,)] , 3
U ltn + 7ty = tn) tn + (87 — tn) 3)
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Figure 2. Cone and pyramid tracing for volumetric NeRF parameterizations. (a) Mip-NeRF [ 1] uses cone frustums to parameterize a 3D
region. Since the IPE of these frustums does not have a closed-form solution, it is approximated by modelling the frustum as a multivariate
Gaussian. (b) Exact-NeRF casts a square pyramid instead of a cone, allowing for an exact parameterization of the IPE by using the vertices

v; of the frustum and the pose parameters o and R.

where t,, and ¢ s are the near and far planes. In this sense, the
colour and density of each point over the ray are obtained
by (¢, 04) = f(v(r(t:)), v(d/[d]]); ©).

Finally, the pixel colour C'(r) is obtained using numeri-
cal quadrature,

N

C(r) = Zﬂ(l — exp(—046;))

i )
Ti = €exp —ZO'J‘(SJ‘ ;
j=1

where §; = t;11 — t;. This process is carried out hierar-
chically by using coarse C, and fine C '+ samplings, where
the 3D points in the latter are drawn from the PDF formed
by the weights of the density values of the coarse sampling.
The loss is then the combination of the mean-squared error
of the coarse and fine renderings for all rays r € R, i.e.,

L= |Ccx) = C)3 +ICr(x) —C@3. &

reR

Here we find mip-NeRF [ 1] is similar to NeRF, but it utilises
cone tracing instead of ray tracing. This change has the di-
rect consequence of replacing ray intervals by conical frus-
tums F'(d, o0, p, t;, t;11), where p is the radius of the circu-
lar section of the cone at the image plane (Fig. 2a). This
leads to the need for a new positional encoding that sum-
marizes the function in Eq. (2) over the region defined by
the frustum. The proposed IPE is thus given by:

av
Yi(d, 0, p,ti, tip1) = M. (6)

W av

Since the integral in the numerator of Eq. (6) has no
closed-form solution, mip-NeRF proposes to approximate
it by considering the cone frustums as multivariate Gaus-
sians. Subsequently, the approximated IPE ~* is given by:

Y (1, X) = EzNN(Pu,PEPT) [v(x)]
sin(Pu) o exp(—(1/2)diag(PEZP ")) (N
cos(Pp) o exp(—(1/2)diag(PEPT))| ’

where p = o + pd is the centre of the Gaussian for a
frustum defined by o and d with mean distance along the
ray [, 3 is the covariance matrix, o denotes element-wise
product and:

100200 281 o o "
P=|010020... 0 21 0 . ®
001002 0 0 2Lt

This formulation was empirically shown to be accurate for
bounded scenes where a central object is the main part of
the scene and no background information is present. How-
ever, the approximation deteriorates for highly elongated
frustums. To avoid this, mip-NeRF 360 [2] instead uses
a contracted space where points that are beyond the unit
sphere are mapped using the function:

x Ix] <1

0=l )

Subsequently, the new g and 3 values are given by f(u)
and J ()T s (p) T, where J ¢ is the Jacobian matrix of f.
Empirically, this re-parameterization now allows learning
the representation of scenes with distant backgrounds (i.e.
over a longer depth of field).

x> @



Figure 3. Parameterization of triangular faces. The vertices
are sorted counter-clockwise, so the normal vector to their plane
points outside the frustum.

3. Exact-NeRF

In this paper, we present Exact-NeRF as an exploration of
how the IPE approximations of earlier work [1, 2] based
on conic parameterization can be replaced with a square
pyramid-based formulation in order to obtain an exact IPE
YE, as shown in Fig. 2. The motivation behind this formu-
lation is to match the volumetric rendering with the pixel
footprint, which in turn is a rectangle.

3.1. Volume of pyramidal frustums

A pyramidal frustum can be defined by a set of 8 vertices
V= {vi}le and 6 quadrilateral faces F = { fj}?:l' In
order to get the volume in the denominator of Eq. (6), we
use the divergence theorem:

///V-Fde F.ds, (10)
as

with F = £ [,, z]", yielding to the solution for the vol-

ume as:
V:///dVZE# [z,y, 2] dS. a1
3 o5

Without losing generality, we divide each face into trian-
gles, giving a set of triangular faces 7 such that the poly-
hedra formed by faces F and 7 are the same. Each tri-
angle 7 is defined by three points Py, P, and P, >,
with P ; € V), such that the cross product of the edges
E;1=P,1—P,pand E; 2 = P, > — P, points outside
the frustum (Fig. 3). As aresult, Eq. (11) equates to the sum
of the surface integral for each triangle 7 € T,

1
V=§Z//T[:z:,y,z]ds. (12)

TET

The points lying in the triangle AP, (P, 1P > can hence
be parameterized as:

P, (u’7 U) = PT,O + UET,I + ’UET,Q ) (13)

suchthat 0 < v < 1,0 < v <landu+ v < 1. The
differential term of Eq. (12) is then:

oP, 0P,
dsS = < 5 X 5 )dudv (14)
dS = (E,1 x E;2) dudv & N, dudv . (15)

By substituting Eq. (15) into Eq. (12), and noting that
[x,y, 2] = P, (u,v), we obtain:

1 1 1—v
vl Z/ / P,(u,0) Nodudo.  (16)
3 reT”/0 JO

Since the dot product of any point P in a face 7 with a
vector N, normal to 7 is constant, the product inside the
integral of Eq. (16) is constant. Subsequently, P-(u, v) can
be replaced with any point, such as P, o. Finally, the re-
quired volume is obtained as:

1 T 1 1—v
V== P, NT/ / dudv
3 Z 0 o Jo

TeT (17)

1
=52 PN
TET

3.2. Integration over the PE Function

Following from earlier, we can obtain the numerator of the
IPE in Eq. (6) using the divergence theorem. We will base
our analysis on the sine function and the = coordinate, i.e.,

v(x) = sin(2'z). Substituting F = [— cos(2la;),0,0]T
in Eq. (10) we obtain:

///Sin(2l$)dV = #95 [—% cos(2lx),0,0] ds. (18)

Following the same strategy of dividing the surface into tri-
angular faces as in the earlier volume calculation, Eq. (18)
can be written as:

/// sin(@a)dv = 3 fo Noi, o (19)

TET

where 1 is the unit vector in the z direction and:

1 1—v
Opr = / / —cos(2'x, (u, v))dudv . (20)
0 Jo
From Eq. (13), the = coordinate can be parameterized as:

2o (u,v) = T70 +u(@r1 — Tr0) + V(T2 — 2rp0) . (21)



Substituting Eq. (21) in Eq. (20) and solving the integral,
we obtain:

1 cos(2'z0)
Opr = —
i 22l (xT,O - :ET,I)(*TT,O - x‘r,Q)
cos(2lx,
+ 22r1) (22)
(x‘r,l - xT,O)(xT,l - 1'772)
N cos(2'z, ) ) .
(xT,Q - xT,O)(xT,Q - Z‘T,l)
Furthermore, Eq. (22) can be written as:
1 det ([1 =, cos(2x,
T2t det ([1 x, x2?])
T T on
where 1 = [1,1,1] ', ®; = [x;0,%:1,%-2] and (-)°" is

the element-wise power.
In general, we can also obtain the expression in Eq. (19)
for the k-th coordinate of x as:

, 1
/// sin(2'xy,)dV = 580 Z ok, +Nr - e, (24)

TET

_ det (1 XJer cos(2'Xep)])
BT et (U XTer (XJen)?])

(25)

where X, = [PT70 P, P-,—A’Q] and e;, are the vectors
that form the canonical basis in R®. Similarly, the integral
over the cosine function is defined as:

1
///cos(?lxk)dv =53 Z &N, ey, (26)
TET
where:

det ([1 X[ep sin(2'X]ex)])
det ([1 X]ep (X[ ep)?])

Eoyr = — 27
Finally, we get the exact IPE (EIPE) of the frustum used by
our Exact-NeRF approach by dividing Egs. (24) and (26) by
Eq. (17) as follows:

g [ ZzeroroN-
Pl N,

(e lV) = g | SO (28)
> er PLoN,

.
where o, = [o1r o02r 03, and & =

(ST ég)T]T. It’s worth mentioning that Eq. (28)
fails when a coordinate value repeats in any of the points of
a triangle (i.e., there is a triangle 7 such that P, ; = P, ;
for ai # j). For these cases, I’Hopital’s rule can be used
to evaluate this limit (see Supplementary Material).
Despite starting our analysis with squared pyramids, it
can be noted that Eq. (28) is true for any set of vertices V,

meaning that this parameterization can be applied for any
shape with known vertices. This is particularly useful for
scenarios where the space may be deformed and frustums
may not be perfect pyramids, such as in mip-Nerf 360 [2].
Additionally, it can be noted that our EIPE is multiplied by
a factor of 273!, meaning that when L — oo then vp —
0 which hence makes our implementation robust to large
values of L. This property of our Exact-NeRF formulation
is consistent with that of the original mip-NeRF [1].

4. Implementation Details

Exact-NeRF is implemented using the original code of mip-
NeRF, which is based on JAXNeRF [4]. Apart from the
change of the positional encoding, no further modification
is made. We use the same sampling strategy of ray inter-
vals defined in Eq. (3), but sampling N + 1 points to define
N intervals. In order to obtain the vertices of the pyramid
frustums, we use the coordinates of the corners of each pixel
and multiply them by the ¢; values to get the front and back
faces of the frustums. Double precision (64-bit float) is used
for calculating the EIPE itself, as it relies upon arithmetic
over very low numerical decimals that are otherwise prone
to numerical precision error (see Eq. (22)). After calcula-
tion, the EIPE result is transformed back to single precision
(32-bit float).

We compare our implementation of Exact-NeRF against
the original mip-NeRF baseline on the benchmark Blender
dataset [20], down-sampled by a factor of 2. We follow
a similar training strategy as in mip-NeRF: training both
models for 800k iterations (instead of 1 million, as we ob-
served convergence at this point) with a batch size of 4096
using Adam optimization [13] with a logarithmically an-
nealed learning rate, 5 x 10™% — 5 x 1075, All training is
carried out using 2 x NVIDIA Tesla V100 GPU per scene.

Additionally, we compare the use of the EIPE against
mip-NeRF 360 on the dataset of Barron et al. [2]. Sim-
ilarly, we used the reference code from MultiNeRF [21],
which contains an implementation of mip-NeRF 360 [2],
RefNeRF [28] and RawNeRF [19]. Pyramidal frustum ver-
tices are contracted using Eq. (9) and the EIPE is obtained
using the Eq. (28) with the mapped vertices. We trained
using a batch size of 8192 for 500k iterations using 4 x
NVIDIA Tesla V100 GPU per scene. Aside from the use of
the EIPE, all other settings remained unchanged from mip-
NeRF 360 [2].

5. Results

Mean PSNR, SSIM and LPIPS [33] metrics are reported for
our Exact-NeRF approach, mip-NeRF [1] and mip-NeRF
360 [2]. Additionally, we also report the DISTS [7] metric
since it provides another perceptual quality measurement.
Similar to mip-NeRF, we also report an average metric: the
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Figure 4. Qualitative comparison between mip-NeRF and Exact-NeRF (ours) for the blender dataset. Our method matches the mip-NeRF
rendering capability but also produces slightly sharper renderings (see the bass drum hole and the back leaves of the ficus).

Model PSNR1T SSIMT LPIPS] DISTS] Avgl

Model PSNRT SSIMT LPIPS] DISTS| Avgl

Mip-NeRF 34.766  0.9706  0.0675 0.0878  0.0242
Exact-NeRF (ours) | 34.707 0.9705  0.0667 0.0822  0.0242

Mip-NeRF 360 27.325  0.7942  0.6559 0.2438  0.1077
Exact-NeRF (ours) | 27.230  0.7881  0.6569 0.2452  0.1088

Table 1. Quantitative results comparing mip-NeRF and Exact-
NeRF performance on the Blender dataset.

geometric mean of the MSE = 10~PSNR/10 /T —"SSIM, the
LPIPS and the DISTS.

Blender dataset: In Tab. | we present a quantitative com-
parison between Exact-NeRF and mip-NeRF. It can be ob-
served that our method matches the reconstruction perfor-
mance of mip-NeRF, with a marginal decrease of the PSNR
and SSIM and an increment in the LPIPS and DISTS met-
rics, but with identical average performance. This small
decrement in the PSNR and SSIM metrics can be explained
by the loss of precision in the calculation of small quanti-
ties involved in the EIPE. Alternative formulations using the
same idea could be used (see Supplementary Material), but
the intention of Exact-NeRF is to create a general approach
for any volumetric positional encoding using the vertices
of the volumetric region. Fig. 4 shows a qualitative com-
parison between mip-NeRF and Exact-NeRF. It can be ob-
served that Exact-NeRF is able to match the reconstruction
performance of mip-NeRF. A closer examination reveals
that Exact-NeRF creates sharper reconstructions in some re-
gions, such as the hole in the bass drum or the leaves in the
ficus, which is explained by mip-NeRF approximating the

Table 2. Comparison of the performance of Exact-NeRF with mip-
NeRF 360 on the unbounded dataset of Barron ef al. [2].

conical frustums as Gaussians. This is consistent with the
increase in the LPIPS and DISTS, which are the perceptual
similarity metrics.

Mip-NeRF 360 dataset: Tab. 2 shows the results for the
unbounded mip-NeRF 360 dataset. Despite Exact-NeRF
having marginally weaker reconstruction metrics, it shows
a competitive performance without any changes to the im-
plementation of the EIPE used earlier with the bounded
blender dataset, i.e., the contracted vertices were directly
used without any further simplification or linearization, as
in mip-NeRF 360 [2]. Similar to the blender dataset re-
sults, this decrement can be explained with the loss of pre-
cision, which suggests that an alternative implementation
of Eq. (28) may be needed. A qualitative comparison is
shown in Fig. 5. It can be observed that tiny vessels are
more problematic for Exact-NeRF (Fig. 5a), which can be
explained again by the loss of precision. However, it is
noted in Fig. 5b that the reconstruction of far regions in mip-
NeRF 360 is noisier than Exact-NeRF (see Fig. 5b, grill and
the car), which is a consequence of the poor approximation
of the Gaussian region for far depth of field objects in the
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Figure 5. Qualitative comparison between mip-NeRF 360 and Exact-NeRF (ours). (a) Our model, similar to mip-NeRF, struggles with tiny
vessels. (b) Exact-NeRF shows cleaner renderings and (c) higher quality background reconstruction.

scene. Fig. 5c reveals another example of a clearer region
in the Exact-NeRF reconstruction for the background detail.
Fig. 6 shows snapshots of the depth estimation for the bicy-
cle, bonsai and garden scenes. Consistent with the colour
reconstructions, some background regions have a more de-
tailed estimation. It is also noticed (not shown) that de-
spite Exact-NeRF having a smoother depth estimation, it
may show some artifacts in the form of straight lines, which
may be caused by the shape of the pyramidal frustums. It
is worth reminding that our implementation of the EIPE in
mip-NeRF 360 is identical to the EIPE in mip-NeRF.

Impact of Numerical Underflow As seen in Sec. 3, Exact-
NeRF may suffer from numerical underflow when the dif-
ference of a component of two points A = x,; — . ; is too
close to zero (A — 0). In the case of this difference being
precisely zero, the limit can be found using I’Hopital’s rule,
as is further developed in Appendix A.1. However, if this
value is not zero but approximately zero, numerical under-
flow could lead to exploding values in Eq. (22). This error
hinders the training of the MLP since the IPE is bounded to
the interval [—1, 1] by definition (Eq. (6)). An example of
the effect of numerical underflow in our method applied un-

der the mip-NeRF 360 framework is shown in Fig. 7. The
black lines are the location of such instances where under-
flow occurs. The curvature of these lines is a direct conse-
quence of the contracted space used in mip-NeRF 360. In
order to eliminate this effect, we use double precision for
the calculation of the EIPE. Additionally, all differences of
a coordinate which are less than 1 x 10~ are set to zero and
reformulated using I’Hopital’s rule.

6. Conclusion

In this work, we present Exact-NeRF, a novel precise vol-
umetric parameterization for neural radiance fields (NeRF).
In contrast to conical frustum approximation via a mul-
tivariate Gaussian in mip-NeRF [!], Exact-NeRF uses a
novel pyramidal parameterization to encode 3D regions us-
ing an Exact Integrated Positional Encoding (EIPE). The
EIPE applies the divergence theorem to compute the ex-
act value of the positional encoding (an array of sine and
cosines) in a pyramidal frustum using the coordinates of the
vertices that define the region. Our proposed EIPE method-
ology can be applied to any such architecture that performs
volumetric positional encoding from simple knowledge of
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Figure 6. Depth estimation for mip-NerF 360 and Exact-NeRF. Our approach shows better depth estimations for background regions
(highlighted in the black boxes), although some artifacts in form of straight lines may appear, which is inherent in our pyramidal shapes.

Figure 7. Numerical underflow artifacts in Exact-NeRF.

the pyramidal frustum vertices without the need for further
processing.

We compare Exact-NeRF against mip-NeRF on the
blender dataset, showing a matching performance with a
marginal decrease in PSNR and SSIM but an overall im-
provement in the perceptual metric, LPIPS. Qualitatively
our approach exhibits slightly cleaner and sharper recon-
structions of edges than mip-NeRF [1].

We similarly compare Exact-NeRF with mip-NeRF 360

[2]. Despite Exact-NeRF showing a marginal decrease in
performance metrics, it illustrates the capability of the EIPE
on a different architecture without further modification.
Exact-NeRF obtains sharper renderings of distant (far depth
of field) regions and areas where mip-NeRF 360 presents
some noise, but it fails to reconstruct tiny vessels in near
regions. The qualitative depth estimations maps also con-
firm these results. The marginal decrease in performance of
our Exact-NeRF method can be attributed to numerical un-
derflow and some artifacts caused by the choice of a step-
function-based square pyramidal parameterization. In ad-
dition, our results suggest using a combined encoding such
that the EIPE is used for distance objects, where it is more
stable and accurate. Although alternative solutions can be
obtained by restricting the analysis to rectangular pyramids,
our aim is to introduce a general framework that can be ap-
plied to any representation of a 3D region with known ver-
tices. The investigation of more stable representations and
the performance of different shapes for modelling 3D re-
gions under a neural rendering context remains an area for
future work.
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A. Additional Formulation

In this section, we will present some additional formula-
tions used in our model that do not affect the results pre-
sented in the paper. Notwithstanding that our proposed
EIPE works for any polyhedron (which is the reason why it
can be used under the mip-NeRF 360 [2] architecture with-
out further treatment), we also present an alternative formu-
lation of the EIPE for the particular case of strictly square
pyramids.

A.1. Indeterminate cases for the EIPE
By simplifying Eq. (22) we obtain:

(337-,2 - x‘r,l) ( xT,O)
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From Eq. (29) we observe that an indetermination occurs
for the case of two points in the triangle 7 sharing the same
coordinate, such that . ; = - ;,7 # j. In order to get a
valid value for these cases, we get the limit when those two
coordinates approach. We can write Eq. (29) as:
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Then, we obtain the value for the case of 7, ¢ = x,; using
I’Hopital’s rule:
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Similarly, from Eq. (33), we evaluate the case z, o = =, 2:
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For the case when 2, 1 = z, 2, we differentiate with respect
to x ;1 to obtain the corresponding value:
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Finally, when ;0 = x,1 = 2, we use again the
I’Hopital’s rule on Eq. (33) and differentiate again with re-
spect to x, o to obtain:
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Using the same approach, we can find the following expres-
sions for &, - (Eq. (27)):
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Figure 7. Parameterization of the square pyramid using the pixel
width w.

1
lim for = =sin(2lz,g). (43)
Tr 0Ty 1 Tr2 2 ’
Similar expressions can be obtained for the y and z coordi-
nates.

A.2. Alternative EIPE for Squared Pyramids

As mentioned earlier, our EIPE in Eq. (28) can be used for
any shape whose vertices are known. However, the com-
putational cost increases if the 3D shape is complex since a
larger number of triangular faces will need to be processed.
For more efficient methods, we can focus our analysis on
specific shapes. Particular to our scenario, we can obtain
an alternative EIPE exclusively for a square pyramid (note
that this will not be the case for the contraction function in
mip-NeRF 360) with a known camera pose [R|o] and pixel
width w (similar to 7 in mip-NeRF). From Fig. 7, we calcu-
late the volume of the frustum as

tit1 wz/2 wz/2
V= / / dx'dy'dz’ (44)
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2

W

v
3
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The numerator in Eq. (6) for the = coordinate can be ob-
tained in the same way:
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Since the camera pose is known, we can express x as
x=rnz’ +riy +ri3z’ +o1, 47)

where r;; is an element of the rotation matrix R and o; is
the first element of o. Substituting Eq. (47) in Eq. (46) (and

omitting the integration limits for clarity):
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The solution to the integral in Eq. (48) is then:
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Similarly to the EIPE in Eq. (28), an indeterminate value
arises in Eq. (49) for 711 = 0 and r15 = 0. For these cases,
I’Hopital’s rule can be used as in Sec. A.1 or Eq. (48) can
be solved by substituting r1; = 0 and r12 = 0. We omit
these calculations for brevity.

B. Numerical Analysis between IPE and EIPE

We compare the exact value of the EIPE with the approx-
imation in Eq. (7) used by mip-NeRF [1]. In Fig. 8a we
contrast the value of the EIPE vs the IPE for frustums of
length §; = 0.02 at different positions along the ray d and
at different positional encoding frequencies L. The values
of d, o and R correspond to a random pixel of a random im-
age of the blender dataset. It is seen that the approximation
is precise for frustums that are near the camera (small p;),
but it degrades the further it gets. It is also observed that
this effect grows faster for larger values of L. This trend is
more noticeable in the plot of the error between the EIPE
and IPE (Fig. 8b), where the magnitude of the error is a pe-
riodic function approximately bounded by two lines whose
pendant seems to grow proportional with L. Furthermore,
it is observed that the frequency of the error is also pro-
portional to L. Figs. 8c and 8d show a similar analysis for
small values of y; and §; = 5 x 10~%, which correspond
to small frustums. In these instances, it is observed that nu-
merical errors occur, which is consistent with the analysis
of the Impact of Numerical Underflow in Sec. 5. A similar
analysis for a fixed value of u; = 3 and varying §; is shown
in Figs. 8e and 8f. Here, a more drastic error is seen when
0, increases, which is consistent with the observation made
in [2] that the IPE does not approximate well for very elon-
gated Gaussians. Additionally, rapid changes in the IPE are
observed for small variations in the length of the frustum
(see Fig. 8e IPE L = 3 and IPE L = 4), which might not
be desired. On the other hand, our EIPE is more robust to
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Figure 8. Numerical comparison between the IPE and our EIPE. (a) EIPE vs IPE for different values of u: and (b) their difference. (c)
EIPE vs IPE with respect to the length of the frustum J; and (d) their difference.

these elongations, meaning that it could be a more reliable
parameterization for distant objects.

Despite the increasing error in the approximation of the
IPE for larger values of L, this effect gets mitigated by the
nature of the IPE itself, which gives more importance to
the components of the positional encoding with smaller fre-
quencies. However, in scenarios with distant backgrounds
where more elongated frustum arise, such as in the bicycle
scene, Exact-NeRF seems to perform better (Sec. 5). Given
that the scenes in the blender and mip-NeRF 360 datasets
are composed of one central object only, it is difficult to
evaluate the performance of the IPE and EIPE formulations
for distant objects or scenarios with several objects.

C. Additional Results on the Blender Dataset

We present more qualitative comparisons in Fig. 9 between
different scenes of the blender dataset. The reconstructions
of both mip-NeRF and Exact-NeRF are almost identical,
but a few differences can be noted, e.g., the apron of the
chair and the holes in the lego scene are slightly sharper in
our reconstruction; the details in the cymbals of the drum
are more similar with the ground truth; the reconstruction
of the water in the ship scene is more accurate with our
method. Besides these minimal differences, our exploratory
work demonstrates that analytical solutions to a volumet-
ric positional encoding exist if the shape of the frustum is
changed.
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Figure 9. Additional results of Exact-NeRF for the blender dataset.



D. Limitation of Existing Metrics

Following the approach from previous NeRF research, we
report PSNR, SSIM and LPIPS as our evaluation metrics.
PSNR and SSIM are two of the first evaluation metrics for
image reconstruction. Traditionally, PSNR (based on the
MSE metric) has been used to assess the quality of lossy
compression algorithms. Since the PSNR is obtained via
the pixel-wise absolute error, it cannot measure the struc-
tural and/or perceptual similarity between the reconstructed
and reference images. SSIM was proposed as an alternative
metric since it quantifies the relation between the pixels and
their neighbourhood (i.e., the structural information). Sev-
eral works have focused on the weakness of these metrics
[S3-S7], where the main criticism is that images subject to
different compression artifacts and distortion effects (such
as additive Gaussian blurring) exhibit similar PSNR and
SSIM values. Additional work [S2] has shown analytical
and experimental relations between both metrics, meaning
that they are not independent. In order to overcome these
effects, recent image quality assessment methods have been
proposed. Ding et al. [S1] have carried out a comprehensive
comparison between different metrics, where deep neural
networks-based metrics such as LPIPS [33] and DISTS [7]
showed to be the most reliable quality metrics for perceptual
similarity. These metrics compare two images by measuring
the distance of their feature maps from a pretrained neural
network. These results motivated us to include the DISTS
metric in our experiments (Tabs. 1 and 2). Our method ob-
tains a better performance in the LPIPS and DISTS metrics,
thus improving the perceptual quality.
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