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ABSTRACT 

This paper proposes a novel Active Network Management 

(ANM) framework for day-ahead operations planning of a 

medium-voltage active Distribution Network (DN) using a 

heuristic Network Reconfiguration (NR) algorithm with a 

Curtailment Minimisation Scheme (CMS) to maximise 

utilisation of renewable Distributed Generation (DG) 

resources. The reconfiguration scheme uses Back-to-Back 

Voltage Source Converters (BTB-VSCs) in the network as 

Soft Open Points (SOP) which are modelled 

mathematically using  the Flexible Universal Branch 

Model (FUBM) developed previously in Durham 

University. Moreover, this day-ahead ANM framework 

takes into account the variable nature of RES outputs by 

adopting a stochastic multi-scenario formulation using the 

Inverse Transform Method and Stratified Sampling to 

generate power output realisations for the RES. 

Simulations carried out for a modified IEEE-33 

distribution test system shows the proposed ANM 

framework is capable of reducing operational costs by 

2.22% to the system operator whilst actively regulating the 

voltage throughout the network and reducing curtailment 

in medium and high power output scenarios. 

INTRODUCTION 

The worldwide climate policy has widely adopted a Net-

Zero focus. Many countries have pledged and set targets to 

reduce Greenhouse Gas (GHG) emissions to achieve Net-

Zero by 2050 [1], [2]. One of the main paths to achieve this 

goal is the total decarbonisation of electricity by a 

transition to Renewable Energy Resources (RES) as 

Distributed Generation (DG) in electrical networks [3], 

[4]. However, this transition and high integration of RES 

will pose new operational challenges for the existing 

infrastructure. Amongst the main operational challenges 

facing operators are power variability and intermittency of 

RES, low network flexibility and voltage and thermal 

limits violations [3], [5]–[7]. These problems are more 

evident in Medium and Low Distribution Networks (DNs) 

where there is a high susceptibility to voltage fluctuations 

due to its high coupling with real power injection [6], [7]. 

It is in this context that new management frameworks such 

as Active Network Management (ANM) start to appear 

more relevant in recent years for Distribution System 

Operators (DSOs) to manage their distributed resources 

while addressing these new operational challenges. 

One of the ANM frameworks that have drawn attention to 

reinforce networks is Network Reconfiguration (NR) 

using Soft Open Points (SOPs). SOPs are essentially 

Power Electronics Devices (PEDs) that are placed at 

strategic points in the DNs to provide flexible power flow 

control and fast response to unforeseen changes in power 

supply and demand [8], [9]. In contrast with traditional 

equipment such as On Load Tap Changing (OLTC) 

Transformers, capacitor banks and Remote Controllable 

Switches (RCSs) which may be operationally limited due 

to their discrete nature and physical constrains, SOPs are 

much more flexible in their operation [9]. The form of 

SOPs that have been explored and researched in previous 

works are the Back-to-Back Voltage Source Converters 

(BTB-VSCs). For instance, the capabilities of the BTB-

VSCs for load balancing between adjacent feeders using 

soft-meshing was explored and compared with RCSs in 

[5]. In the work of [6], the BTB-VSCs were used for 

voltage profile regulation and abating power congestion 

through a NR framework for daily operations planning for 

DNs. Moreover, in [10] the topology was used to minimise 

losses and reduce phase imbalance in DNs. Alternatively, 

the common DC-link formed by the BTB-VSCs was used 

in [7] to create a Multi-Terminal DC (MTDC) network 

within the DNs to increase the hosting capacity for DGs. 

Thus, making the topology of BTB-VSCs advantageous 

for a large variety of applications, including NR 

frameworks, addressing current challenges in DNs. 

For this paper, the contributions are as follows 

• Development of an ANM Framework which 

addresses current operational challenges in DNs 

using Curtailment Minimisation Scheme (CMS) 

for Distributed Generators (DGs) and a NR 

Framework for day-ahead operations planning. 

• Integration of a Stochastic Optimisation 

Framework to the ANM to address technical 

challenges of high DG RES integration. 

• Development of novel ANM approaches for 

future DNs with high penetration of RES. 

ACTIVE NEWORK MANAGEMENT 

FRAMEWORK 

This section will present the ANM Framework used for 

this work which consists of a heuristic Network 

Reconfiguration (NR) strategy based on the work carried 

out in [6] and a Curtailment Minimisation Scheme (CMS) 

to maximise power generation from the DGs. 
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The BTB-VSCs used for the NR scheme were 

mathematically modelled using the Flexible Universal 

Branch Model (FUBM) developed by Alvarez-Bustos et. 

al [11], [12] previously developed in Durham University 

for MATLAB/MATPOWER adding extra degrees of 

freedom for modelling control capabilities of BTB-VSCs 

needed for effective NR implementation.  

Network Reconfiguration  

To improve the performance of the DNs by increasing their 

flexibility, a NR scheme is implemented in this work. The 

original scheme was implemented by Ibrahim A. et. al. in 

[6] using the Advanced Interactive Multidimensional 

Modeling System (AIMMS) software. However, this 

scheme imposes a Mixed Integer Non-Linear 

Programming (MINLP) problem which the current version 

of MATPOWER is not capable of solving and is inherently 

computationally expensive [13]. Thus, a heuristic 

approach has been developed to implement the NR scheme 

using MATPOWER without the need for formulating the 

problem as a MINLP. The implementation of the NR 

scheme is based on a heuristic algorithm, the configuration 

of controlled lines (𝒞) and radiality constraints. There are 

two radiality constraints that must ensure the radial 

topology of the distribution network is preserved. The 

Initial Radial State Constraint (IRSC) shown in Eq. (1) 

ensures that the number of active controlled lines 𝑐 at any 

time 𝑡 will be equal as the initial state 𝑠𝑐
0. 

∑𝑠𝑐
𝑡

𝑐∈𝒞

= ∑𝑠𝑐
0

𝑐∈𝒞

  𝑡 ∈ 𝒯 (1) 

In Eq. (1), the set 𝒯 is the set of all time-periods within a 

set planning time and 𝒞 is the set of all controlled lines. 

The IRSC shown in Eq. (1) on its own might be 

insufficient to ensure radiality because it can isolate buses 

from the Grid Supply Point (GSP) [6]. Consequently, the 

Active Paths Constraint (APC) is implemented to 

guarantee radiality. The APC ensures that at least one k-th 

path 𝜋𝑘
𝑖  in the i-th region Πi is connected to the GSP. The 

APC is shown in the Eq. (2). 

𝛱𝑟,𝑡 = ∑ 𝜋𝑘
𝑟,𝑡(𝑠𝑐)

𝐾

𝑘=1

≥ 1  𝑟 ∈ ℛ, 𝑡 ∈ 𝒯 (2) 

In Eq. (2), the set ℛ is the set of all regions of the network 

that should be connected to the GSP. Both constraints are 

evaluated in the NR algorithm shown in Fig.  1. 

Essentially, this algorithm will filter possible 

configurations with the radiality constraints and then 

heuristically evaluate these configurations using the 

FUBM to set up the active paths with the BTB-VSC 

looking for the configuration that has the minimum 

operational cost. With the FUBM, voltage and power 

controls are applied to the BTB-VSCs to actively regulate 

the AC voltage and limit the active power across the 

arrangement, respectively. It should be noted that this 

approach does not impose a true MINLP optimisation 

problem in contrast with the work done in [6]. 

 
Fig.  1. Network Reconfiguration algorithm flowchart. 

Curtailment Minimisation Scheme for DGs 

To reduce the curtailment actions on the DGs, a 

curtailment variable ζ is added to the optimisation problem 

for all DGs (𝒢). The variable ζ bounds and constraints are 

described in the Eq. (3). 
0 ≤ 𝜁𝑖 ≤ 𝑃𝑚𝑎𝑥

𝑖   𝑖 ∈ 𝒢

𝜁𝑖 = 𝑃𝑚𝑎𝑥
𝑖 − 𝑃𝑔

𝑖  𝑖 ∈ 𝒢
 (3) 

In Eq. (3), the set 𝒢 is the set of all active DG in the 

network. Furthermore, a quadratic cost function is also 

added for ζ. This function calculates the total cost of 

curtailment for all generators with {𝐐𝐳, 𝐜𝐳, 𝐤𝐳} forming the 

vectors of cost coefficients. The total curtailment cost is 

shown in the Eq. (4). 
𝑓𝑐𝑢𝑟𝑡(𝜁) = 𝜁⊺𝑑𝑖𝑎𝑔(𝑸𝒛)𝜁 + 𝒄𝒛

⊺𝜁 + 𝒌𝒛 (4) 

where 𝑄𝑧
𝑖 ∈ 𝐐𝐳, 𝑐𝑧

𝑖 ∈ 𝐜𝐳 and 𝑘𝑧
𝑖 ∈ 𝐤𝐳 are the cost 

coefficients that define the quadratic function for each DG. 

The matrix diag(𝐐𝐳) is a diagonal matrix with all diagonal 

elements being the elements of 𝐐𝐳. The main objective of 

this cost function is to respond to curtailment values given 

by Eq. (3). Thus, minimising the values in ζ will minimise 

the costs of 𝑓𝑐𝑢𝑟𝑡(ζ). 

ANM IMPLEMENTATION: A MULTIPERIOD 

STOCHASTIC OPTIMISATION  

As it has been said in previous sections, the high 

penetration of RES based DG increases the level of 

uncertainty and intermittency within the DNs. As 

uncertainty increases, the stakeholders in the network may 

have to make decisions under uncertain scenarios such as 

the level of demand, power generation and electrical 

market prices which lower the overall efficiency, security, 

and reliability of the DNs [9], [14], [15]. For this reason, 

new ANM frameworks should be able to handle a certain 

degree of uncertainty to work accordingly with the new 

DNs. Stochastic Optimisation methods provide tools to 

model and optimise decisions under uncertainty [16]. 
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Stochastic Scenario Generation 

To implement the stochasticity of RES DG profiles into 

the ANM framework, multi-scenario matrices 𝐷𝑞  are 

introduced. These 𝐷𝑞  matrices are populated with power 

output scenarios ω𝑡
𝑞,𝑗

 generated by using the inverse 

transform and stratified sampling methods. The scenarios 

ω𝑡
𝑞,𝑗

 are generated as 

𝜔𝑡
𝑞,𝑗

= 𝐹𝒲
−1(𝑧𝑡

𝑞,𝑗
)  𝑗 ∈ 𝒥,  𝑡 ∈ 𝒯, 𝑞 ∈ 𝒬 (5) 

In Eq. (5), 𝒥 is the set of all generated scenarios for the 

stochastic analysis, 𝒬 is the set of all segments or intervals 

used for the stratified sampling method, 𝑧𝑡
𝑞,𝑗

is a random 

sample drawn at time 𝑡 for the j-th scenario with uniform 

distribution from the q-th segment and 𝐹𝒲
−1 is the Inverse 

Cumulative Distribution Function (ICDF) of the random 

variable of interest 𝒲. Then, the 𝐷𝑞  matrix is defined as a 

(𝑁𝑡 × 𝑁𝑗) matrix for each 𝑞 segment. Eq. (6) shows the 

multi-scenario matrix  

𝐷𝑞 =

[
 
 
 
 
 𝜔1

𝑞,1
⋯ 𝜔1

𝑞,𝑗
⋯ 𝜔1

𝑞,𝑁𝑗

⋮ ⋱ ⋮ ⋮

𝜔𝑡
𝑞,1

⋯ 𝜔𝑡
𝑞,𝑗

⋯ 𝜔𝑡

𝑞,𝑁𝑗

⋮ ⋮ ⋱ ⋮

𝜔𝑁𝑡

𝑞,1
⋯ 𝜔𝑁𝑡

𝑞,𝑗
⋯ 𝜔𝑁𝑡

𝑞,𝑁𝑗

]
 
 
 
 
 

 (6) 

In this work, this matrix is used as an input parameter for 

generating multiple scenarios representing variable RES 

DG profiles thereby making the overall ANM planning 

framework into a stochastic optimisation problem. 

General Objective Cost Function 

The stochastic optimisation problem implemented as the 

ANM framework in this paper can be simply stated as 
𝑚𝑖𝑛

𝒙
𝔼(�̂�𝑑𝑠𝑜(𝒙)) 

𝒙⊺ = [𝛩, 𝑉, 𝑃𝑔, 𝑄𝑔, 𝜁] 
(7) 

where 𝒙 is the state variables vector and �̂�𝑑𝑠𝑜(𝒙) is the 

general cost function for the DSO that is currently formed 

by two components 
�̂�𝑑𝑠𝑜(𝒙) = 𝑓𝑔(𝑃𝑔, 𝑄𝑔) + 𝑓𝑐𝑢𝑟𝑡(𝜁) (8) 

the first element 𝑓𝑔(𝑃𝑔, 𝑄𝑔) is the sum of individual 

polynomial cost functions 𝑓𝑃
𝑖 and 𝑓𝑄

𝑖  of real power and 

reactive power injections for each DG, respectively. This 

cost function is stated as 

𝑓(𝑃𝑔, 𝑄𝑔) = ∑[𝑓𝑃
𝑖(𝑝𝑔

𝑖 ) + 𝑓𝑄
𝑖(𝑞𝑔

𝑖 )]

𝑖∈𝒢

 (9) 

Moreover, the second element 𝑓𝑐𝑢𝑟𝑡(ζ) was explained in 

Eq. (4). Additionally, the expected cost value 𝔼(�̂�𝑑𝑠𝑜) 

from the simulations will be also contemplated. This 

expected cost value will consider 𝑁𝑗 total number of 

scenarios and 𝑁𝑡 total number of time-periods. It will be 

computed as follows 

𝔼(�̂�𝑑𝑠𝑜) =
1

𝑁𝑗

∑
1

𝑁𝑡

∑∑[𝑓𝑔
𝑗𝑡𝑖

(𝑃𝑔
𝑗𝑡𝑖

, 𝑄𝑔
𝑗𝑡𝑖

) + 𝑓𝑐𝑢𝑟𝑡
𝑗𝑡𝑖 (𝜁𝑗𝑡𝑖)]

𝑖∈𝒢𝑡∈𝒯𝑗∈𝒥

 (10) 

The proposed Active Network Management (ANM) 

framework implemented in this paper essentially solves a 

multi-period stochastic optimisation problem (in form of 

an Optimal Power Flow) with the goal of minimising the 

cost in objective function in Eq. (10) below subject to the 

networks realistic operational and physical limits (i.e., the 

nodal power balance equations).  

CASE STUDY AND RESULTS 

The case study and simulations are carried out in 

MATLAB environment using the MATPOWER [17] for 

solving power flow and OPF problems. The distribution 

test system used as a benchmark for the simulations is the 

IEEE 33-bus distribution system [18]. The network case 

data was modified to include 6 DGs throughout the 

network to simulate high penetration of RES for a total DG 

capacity of 6 MW (1 MW each). The DGs and load profiles 

used for the simulated cases can be found in Appendix (A). 

Moreover, 10 controlled lines have been included using 

FUBM for the NR scheme. The modified IEEE 33-bus 

distribution test system used in this work is shown in the 

Fig.  2. For the stochastic simulation and analysis, UK 

onshore wind power data have been used from the period 

of 01-01-2010 to 31-12-19 [19]. Furthermore, a seasonal 

approach has been considered due to the differences in 

power outputs from the onshore wind resources 

throughout the year. The seasonal datasets used for the 

analysis are from summer and winter extracted from the 

main dataset mentioned earlier. Likewise, these datasets 

were segmented by wind level power output using 

stratified sampling for generating multiple scenarios of 

wind resource for the simulation as per Eq. (5) and (6).  

 
Fig.  2. Modified IEEE 33-bus distribution test system including 6 DGs 

and controlled lines for network reconfiguration. 

For the proof of concept, deterministic simulation cases 

were run using MIPS 1.4 (MATPOWER Interior Point 

Solver) developed by Zimmerman R. and Wang H. [13] on 

a PC with an Intel Core CPU at 2.5GHz with 8GB RAM. 

Curtailment Minimisation Scheme  

To test this feature of the proposed ANM, a comparison on 

the DGs’ output is done by simulating the distribution test 

system with and without using the CMS. Two cases are 

analysed: (I) power curtailed on the DGs and (II) 

scheduled generation at the Grid Supply Point (GSP) in a 

day-ahead operations planning framework. Both cases’ 

results are shown in Fig.  3 and in TABLE 1.  
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Fig.  3. CMS: Curtailed power on DGs and scheduled generation of 

GSP in day-ahead operations planning. 

The results indicate that there is a lower degree of 

curtailment on the DGs when using the CMS. The total 

reduction of power curtailed over the 24-hour planning is 

7.32 MW which represents 44% reduction from the 

simulation case that is not using CMS. Then, the same 

amount of power is reduced from the scheduled generation 

at the GSP reaching a scheduled generation of 0 MW in the 

hours of peak generation of the DGs (see Appendix A).  
TABLE 1. Results of simulations using CMS. 

Using CMS? DGs curtailed power [MW] GSP scheduled gen. [MW] 

No 16.57 46.51 

Yes 9.25 39.71 

 

Also, it can be noted that in the case where the CMS is 

active, there is still power being curtailed because the load 

is being fully served at that time and power curtailment is 

unavoidable. For instance, a viable way to avoid 

curtailment in this condition is to sell the power surplus to 

the DSO in an energy transactive framework. 

 

 

 
Fig.  4. Network Voltage Profile in Normal 

Operation (i.e., no NR). 

 
Fig.  5.  Network Voltage Profile using NR with 

RCSs. 

 
Fig.  6. Network Voltage Profile using NR with 

BTB-VSCs. 

Distribution Network Voltage Profile 

To evaluate the voltage profile, three simulation cases for 

comparison are carried out: (I) Normal operation (i.e., no 

NR), (II) NR using conventional RCSs and (III) NR using 

BTB-VSCs. The voltage profile maps from the three cases 

are shown in Fig.  4, Fig.  5, & Fig.  6,  respectively. For 

the normal operation case (Fig.  4), it can be seen that the 

voltage magnitude is more variable through the day for the 

nodes far from the GSP (e.g., nodes 12 → 18 & 28 → 33). 

This is caused by the changes in the load and generation 

conditions especially in the peak generation hours and by 

the end of the day. For instance, these nodes got the global 

minimum voltage magnitude value of 0.93 p.u. at the 

lowest generation point (t = 20) and the global maximum 

voltage magnitude value 1.04 p.u. at the highest generation 

point (t = 13). As for the NR with RCSs case (Fig.  5), the 

voltage magnitude has a better performance through the 

network due to the NR including the farthest nodes. Also, 

the switching action of the RCSs can be noticed as the 

voltage magnitude is not as smooth and progressive as the 

first case results. This is due to the NR algorithm that will 

look for the configuration which better performs in terms 

of costs so the network topology might change from time 

t to time t+1. For case using NR with BTB-VSCs (Fig.  6), 

the voltage magnitude remains almost constant throughout 

the network and over the entire operation time-horizon as 

the BTB-VSCs are regulating the buses’ voltage 

magnitude actively. Hence, making active electrical 

branch elements such as VSCs the best option for NR or 

similar flexibility control strategies. The global minimum 

and maximum voltage magnitudes values for all three 

cases for comparison are presented in TABLE 2. 

 
TABLE 2. Global voltage magnitudes values from simulations. 

Global Voltage Magnitudes (p.u.) 

Voltage Normal Op. NR-RCSs NR-BTBVSCs 

MIN 0.9505 0.9378 0.9963 

MAX 1.0446 1.0125 1.0019 

Operational Planning Costs 

The cases for the analysis of operational planning costs are 

as follows: (I) Normal operation, (II) NR using RCSs, (III) 

Normal operation using BTB-VSCs and (IV) NR using 

BTB-VSCs. The results for the day-ahead operation 

planning of the simulation cases are shown in Fig.  7 and 

in TABLE 3. 
TABLE 3. Operational planning costs for simulation cases. 

Simulation 

case 

Normal 

Operation 

NR  

using 

RCSs 

Normal 

operation 

using 

BTBVSCs 

NR  

using 

BTBVSCs 

Expected cost 

($/hr) 
56.22 55.90 57.94 56.65 
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To make a one-to-one comparison between the cases with 

and without BTB-VSCs, the switching losses 𝐺𝑠𝑤  from the 

VSCs have been neglected even though in practice these 

losses are an inherent characteristic of switching PEDs. As 

it is shown in Fig.  7, all cases have similar cost profile 

which tell that seamlessly integration of the BTB-VSCs is 

achieved through the FUBM. Furthermore, considering the 

results in TABLE 3, it can be noticed on how the costs have 

been reduced in both instances where NR have been used 

being 0.59% in the cases without BTBVSCs and 2.22% in 

the cases with them. Thus, proving the action of the NR 

algorithm on reducing costs and indicating that is more 

cost efficient when using BTB-VSCs for its control actions 

in a day ahead operations planning. 

 
Fig.  7. Day-ahead operation planning hourly costs from simulation 

cases. 

Stochastic Simulation 

The stochastic simulations were done in a High-

Performance Computing (HPC) machine suitable for large 

scale parallel calculations and simulations. The results 

from the simulations are summarised in TABLE 4.  
TABLE 4. Stochastic framework simulation results. 

 
 

According to the results of TABLE 4, in the instances of 

MID and HIGH wind scenarios the NR framework is 

capable to keep a higher degree of DG use (i.e., reducing 

curtailment) whilst reducing operational costs in 

comparison with the simulation cases operating without 

the NR. Although in the LOW wind scenarios a lower use 

of DG is exhibited, the NR framework still ensures a lower 

operational cost per hour as it is the algorithm main 

objective. 

CONCLUSIONS 

In this paper, a fully operating ANM framework for 

network operations planning to tackle operational 

challenges introduced by the extensive use of RES in DNs 

has been presented. The main challenges addressed by the 

developed ANM are regarding voltage fluctuations, low 

efficiency in the use of RES, low network flexibility, and 

uncertainty on power generation from the RES. The 

simulations results indicate that the proposed ANM 

framework is capable of ensuring lower operational costs 

when using NR for all cases and increasing the DG use 

(i.e., reducing curtailment) in conditions of medium and 

high wind power. Also, it is capable to actively regulate 

the voltage avoiding fluctuations throughout the DN by 

using the BTB-VSCs. Thus, the developed ANM 

framework is successfully addressing current operational 

challenges thereby incentivising higher levels of RES DG 

integration in active DNs 

APPENDICES 

Appendix A 

 
Fig.  8. DG and load profiles used for the simulation cases. 
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 MW/hr  

DG 
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  /hr  

Operational 

costs 

  /hr 

Power curtailed 

 MW/hr  

DG use

  /hr  

Operational

costs 

  /hr 

100 0.0025   .4 55.22 0.0011   .52 5 . 1

500 0.002   .2 55.2 0.0011   .4 5 . 2

1000 0.002   . 5 55.22 0.0012   .4 5 . 4

100 0.0445  0.05 55.12 0.05 5   .0 55.52

500 0.0442  0.1 55.1 0.052   .2 55.51

1000 0.04 2  0.2 55.11 0.051   . 5 55.4 

100 0.2     .  5 .25 0.24   4. 4 5 .  

500 0.2424  5.  5 .1 0.24   4.  5 . 5

1000 0.2422   .04 5 .21 0.24   4. 1 5 .  

100 0.00 4   .24 54.  0.001   . 5 .04

500 0.00 1   .2 54.  0.001   .  5 .01

1000 0.00 5   .1 54. 0.001   .  55.  

100 0.05    .5 55.2 0.0 5   .04 55. 

500 0.054   .  55.24 0.0 5   .12 55. 

1000 0.054   . 4 55.22 0.0    .0 55. 

100 0.2     .11 5 .  0.2    2.55  0.15

500 0.2    2. 5 5 .  0.2 1  2.4  0.1 

1000 0.2     .04 5 .  0.2 1  2.5  0.2
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