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1. Introduction

Under certain conditions, nonlinear sigma models (NLSM) are renormalizable and even
completely solvable. An example is the𝑂�𝑁�NLSM: in two dimensions the model is renormalizable [1]
and appears in a variety of contexts in statistical mechanics as well as a QCD toy model [2–5]
and consequently has been an object of thorough study via lattice QFT methods. Its quantum
integrability has been demonstrated in [6] by showing the factorization of the S-matrix. A simple
supersymmetric extension of the 𝑂�𝑁� NLSM - with target space supersymmetry 1 – is the
sigma model with target space 𝑂𝑆𝑃�𝑁 � 2𝑚¶2𝑚�©𝑂𝑆𝑃�𝑁 � 2𝑚 � 1¶2𝑚� � 𝑆

𝑁�2𝑚�1¶2𝑚, a
supersphere. Some analytic properties of this model such as the spectrum of local operators at the
renormalization group fixed-points, their integrability properties and their integrable deformations
have been studied in [10–16]. Below we sketch the renormalization properties and the lattice
discretization of this model, presenting some preliminary, standard Hybrid Monte Carlo numerics
for fermionic two-point functions and effective masses. This study, whose details will be given in
a separate publication, provides the simplest ground where to gain experience on the lattice QFT
analysis of two-dimensional sigma models on supersymmetric target spaces. The latter play a role in
a variety of models in statistical mechanics [17–20] and, notably, in string theory and the AdS/CFT
correspondence [21, 22] (see [23–28] for an account of the challenges underlying the discretization
of gauge-fixed worldsheet models).

2. The Model

We consider a 2-dimensional NLSM whose target space is the supersphere 𝑆
𝑁�2𝑚�1¶2𝑚

�

𝑂𝑆𝑃�𝑁�2𝑚¶2𝑚�©𝑂𝑆𝑃�𝑁�2𝑚�1¶2𝑚�. Consider onR𝑁�2𝑚¶2𝑚 a multiplet of supercoordinates Φ ��𝜉1
, . . . , 𝜉

𝑁�2𝑚
, 𝜓

1
, . . . , 𝜓

2𝑚�, where 𝜉𝑎 and𝜓𝛼 represent commuting (bosonic) and anticommuting
(fermionic) degrees of freedom respectively. For two such multiplets one can define an inner product

Φ � Φ̃ � 𝜉
𝑎
𝜉
𝑎
� J 𝛼𝛽

𝜓𝛼�̃�𝛽 , (1)

where repeated indices are summed and J𝛼𝛽 is the 2𝑚 � 2𝑚-dimensional canonical symplectic
matrix

J𝛼𝛽 � � 0 1

�1 0
� . (2)

The unit supersphere constraint is defined by

Φ �Φ � 𝜉
𝑎
𝜉
𝑎
� J 𝛼𝛽

𝜓𝛼𝜓𝛽 � 1 . (3)

In the lattice NLSM, coordinates on the supersphere are promoted to lattice-discretized fields Φ𝑥

(with mixed bosonic and fermionic coordinates) and the lattice-discretized path integral is defined
as

Z � E DΦ 𝑒
�S0 , (4)

1A well known different type of supersymmetric extension is the one which considers a supersymmetric worldsheet [7,
8]. For its lattice QFT analysis see for example [9].
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where the action and measure are

S0 �
𝑎

2

𝑔
=
𝑥

𝜕
𝑓
𝜇Φ𝑥 � 𝜕

𝑓
𝜇Φ𝑥 �

𝑎
2

𝑔
=
𝑥

�2 � J 𝛼𝛽
𝜓
𝛼
𝑥�𝜇𝜓

𝛽
𝑥 � 2𝜉𝑎𝑥�𝜇𝜉

𝑎
𝑥 � ,

DΦ �5
𝑥

𝛿 �1 � 𝜉
𝑎
𝑥 𝜉

𝑎
𝑥 � J 𝛼𝛽

𝜓
𝛼
𝑥 𝜓

𝛽
𝑥� 𝑑𝜉𝑥𝑑𝜓𝑥 .

(5)

Both action and measure are invariant under the supergroup 𝑂𝑆𝑃�𝑁 � 2𝑚¶2𝑚�, whose algebra can
be represented by the super-matrix

𝑆 � � 𝑆𝜉 𝜉 𝑆𝜉 𝜓

𝑆𝜓𝜉 𝑆𝜓𝜓

� , (6)

where 𝑆𝜉 𝜉 is an element of the so�𝑁 � 2𝑚� algebra, 𝑆𝜓𝜓 " sp�2𝑚,R�, while 𝑆𝜉 𝜓 and 𝑆𝜓𝜉 are
anticommuting �𝑁 � 2𝑚�� 2𝑚 and 2𝑚 � �𝑁 � 2𝑚�-dimensional matrices respectively, satisfying
the condition 𝑆𝜉 𝜓 � �𝑆

𝑇
𝜓𝜉 J . The field coordinates transform as 𝛿Φ � 𝑆Φ, or explicitly 𝛿𝜉 �

𝑆𝜉 𝜉 𝜉 � 𝑆𝜉 𝜓𝜓, 𝛿𝜓 � 𝑆𝜓𝜉 𝜉 � 𝑆𝜓𝜓𝜓.
For 𝑚 � 0 and 𝑁 � 1 the supersphere NLSM reduces to the Ising model. For all other

cases, we verified that the models are renormalizable at all orders in perturbation theory, both in
dimensional regularization and on the lattice. To show this, it is sufficient to generalize the steps
of the purely bosonic case [1]. The non-linear realization of the 𝑂𝑆𝑃�𝑁 � 2𝑚¶2𝑚� symmetry
has strong implications on the form of divergences in perturbation theory. The Ward-Takahashi
identities constrain the form of possible counterterms, whose coefficients can be calculated as
a function of only two renormalization constants - the coupling constant 𝑍𝑔 and a unique field
renormalization 𝑍Φ. The full account of this procedure will be given in a separate publication.

3. Formulation with auxiliary fields

From now on we restrict to the case 𝑚 � 1, i.e. with only two fermionic degrees of freedom.
In order to find a form of the action amenable to numerical simulations for this theory, we need to
integrate out the two fermionic fields and in order to do so, we first need to get rid of them in the
constraint in (5). This can be done introducing a coordinate change for the bosonic fields

𝜉
𝑎
𝑥 � 𝜌𝑥𝜑

𝑎
𝑥 with 𝜑

2
𝑥 � 1 and 𝑑𝜉𝑥 � 𝜌

𝑁�1
𝑥 𝑑𝜌𝑥𝑑𝜑𝑥 𝛿�𝜑2

𝑥 � 1�. (7)

The path integral assumes the form

Z � E 5
𝑥

𝑑𝜌𝑥𝑑𝜑𝑥𝑑𝜓𝑥 𝛿�𝜌2
� 2𝜓1𝜓2 J12 � 1�𝛿�𝜑2

𝑥 � 1�𝜌𝑁�1
𝑥 𝑒

�S0 , (8)

where the integral over the 𝜌 field is limited to the interval �0,��. Integrating out the field 𝜌 one
obtains

Z � E 5
𝑥

𝑑𝜑𝑥𝑑𝜓𝑥 𝛿�𝜑2
𝑥 � 1� �1 � 𝑁𝜓

1
𝑥𝜓

2
𝑥 J12� 𝑒

�S0
� E 5

𝑥

𝑑𝜑𝑥𝑑𝜓𝑥 𝛿�𝜑2
𝑥 � 1�𝑒�S1 , (9)
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where

S1 �=
𝑥

𝑁 𝜓
1
𝑥𝜓

2
𝑥 J12 �

2
𝑔
=
𝑥

�1 � 𝜑
𝑎
𝑥�𝜇𝜑

𝑎
𝑥 � 𝜓

1
𝑥𝜓

2
𝑥𝜑

𝑎
𝑥 �𝜑𝑎

𝑥�𝜇 � 𝜑
𝑎
𝑥�𝜇�J12

�𝜓
1
𝑥�𝜇𝜓

2
𝑥�𝜇𝜓

1
𝑥𝜓

2
𝑥𝜑

𝑎
𝑥�𝜇𝜑

𝑎
𝑥J

2
12 � 𝜓

1
𝑥 �𝜓2

𝑥�𝜇 � 𝜓
2
𝑥�𝜇�J12� .

(10)

Notice the presence of a four-fermion, two-boson interaction term.
Completing the square 𝜓1

𝑥�𝜇𝜓
2
𝑥�𝜇𝜓

1
𝑥𝜓

2
𝑥𝜑

𝑎
𝑥�𝜇𝜑

𝑎
𝑥 �

1
2�𝜓1

𝑥�𝜇𝜓
2
𝑥�𝜇𝜑

𝑎
𝑥�𝜇 �𝜓

1
𝑥𝜓

2
𝑥𝜑

𝑎
𝑥�2, we can further

manipulate the path integral by applying the Hubbard-Stratonovich transformation

𝑒
𝜁

2

𝑔 �
Ó
𝑔𝜋 E 𝑑𝐴 𝑒

�
1
𝑔
�𝐴

2
� 2𝐴𝜁 � with 𝜁𝑥,𝜇,𝑛 � �𝜑𝑎

𝑥�𝜇𝜓
1
𝑥�𝜇𝜓

2
𝑥�𝜇 � 𝜑

𝑎
𝑥𝜓

1
𝑥𝜓

2
𝑥�J12. (11)

for every multi-index �𝑥, 𝜇, 𝑎�. We end up with the effective action

S2 �=
𝑥

�2
𝑔
�1 � 𝜑

𝑎
𝑥�𝜇𝜑

𝑎
𝑥 �

1
2 𝐴

𝑎 2
𝑥 ,𝜇
 �=

𝑦

𝜓
1
𝑥K𝑥,𝑦𝜓

2
𝑦J12� , (12)

where

K𝑥,𝑦 � 𝑁 𝛿𝑥𝑦 �
2
𝑔
�𝜑𝑎

𝑥 �𝜑𝑎
𝑥�𝜇 � 𝜑

𝑎
𝑥�𝜇� 𝛿𝑥𝑦 � �𝐴𝑎

𝑥 ,𝜇 � 𝐴
𝑎
𝑥�𝜇 ,𝜇�𝜑𝑎

𝑥𝛿𝑥𝑦 � �𝛿𝑥�𝜇,𝑦 � 𝛿𝑥�𝜇,𝑦�� .
(13)

Notice that K is symmetric under the exchange of 𝑥 and 𝑦.
We can finally integrate out the fermionic fields, which leads to

Z � E 5
𝑥

𝑑𝐴𝑥𝑑𝜑𝑥𝑒
�Sbos detK. (14)

Since K is a real matrix, its determinant is real. However, we do not know a priori whether it is
positive or not. It is then reasonable to expect the emergence of a sign problem in the simulations,
an issue that will be analysed in the future. For the moment we have ignored the sign of the
determinant, replacing detK with its absolute value in (14). We have then used the pseudofermion
representation:

¶ detK¶ � Ô
detK2

� E 𝑑𝜒 exp��=
𝑥,𝑦

𝜒
𝑇
𝑥 �K2��1

𝑥𝑦 𝜒𝑦� , (15)

where the pseudofermion 𝜒 is real.
The final effective action that we have used for numerical simulations is then

Seff �=
𝑥

2
𝑔
�1 � 𝜑

𝑎
𝑥�𝜇𝜑

𝑎
𝑥 �

1
2 𝐴

𝑎 2
𝑥 ,𝜇
 �=

𝑥,𝑦

𝜒
𝑇
𝑥 �K2��1

𝑥𝑦 𝜒𝑦 . (16)

4. Simulation algorithm

We have worked with a standard Hybrid Monte-Carlo [29]. We have chosen the Molecular
Dynamics Hamiltonian

H � �=
𝑥

�1
2�𝜋𝑎

𝑥�2
�

1
2�𝑝𝑎𝑥�2� � Seff�𝜑, 𝐴�, (17)
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where 𝜋 and 𝑝 are the conjugated momenta of 𝜑 and 𝐴 respectively. The conjugated momentum
𝜋𝑥 is constrained to be orthogonal to 𝜑𝑥 , and this guarantees that 𝜑2

� 1 along the solutions of the
equations of motion. Above, we omit the dependence on 𝜒 of Seff, since the pseudofermion is a
spectator for the Molecular Dynamics.

The construction of symplectic integrators for this Hamiltonian is not entirely trivial due to the
constraint on the bosonic field 𝜑

2
� 1. A generalization of the leapfrong integrator reads

𝜋
𝑎
1©2 � 𝜋

𝑎
0 �

𝜏

2 �P 𝜑

0 �𝑎𝑏 𝜕Seff
𝜕𝜑𝑏 �𝜑0, 𝐴0�

𝑝
𝑎
1©2 � 𝑝

𝑎
0 �

𝜏

2
𝜕S
𝜕𝐴𝑎 �𝜑0, 𝐴0�

𝜑
𝑎
1 � cos�𝜏¶𝜋1©2¶�𝜑𝑎

0 � sin�𝜏¶𝜋1©2¶� 𝜋
𝑎
1©2

¶𝜋1©2¶

𝐴
𝑎
1 � 𝐴

𝑎
0 � 𝜏𝑝

𝑎
1©2

𝜋
𝑎
1 � cos�𝜏¶𝜋1©2¶� 𝜋𝑎

1©2 � sin�𝜏¶𝜋1©2¶� ¶𝜋1©2¶𝜑𝑎
0 �

𝜏

2 �P 𝜑

1 �𝑎𝑏 𝜕Seff
𝜕𝜑𝑏 �𝜑1, 𝐴1�

𝑝
𝑎
1 � 𝑝

𝑎
1 �

𝜏

2
𝜕S
𝜕𝐴𝑎 �𝜑1, 𝐴1�.

(18)

P 𝜑
𝑥 is the projector on the hyperplane perpendicular to 𝜑𝑥

�P 𝜑
𝑥 �𝑎𝑏 � 1 � 𝜑

𝑎
𝑥 𝜑

𝑏
𝑥 , (19)

The momentum 𝑝𝑥 is generated from the Gaussian distribution 𝑃�𝑝� � 𝑒
�𝑝

2
©2, while the

momentum 𝜋𝑥 is constructed by generating an auxiliary momentum �̃�𝑥 from the Gaussian distribution
𝑃��̃��� 𝑒

� �̃�
,2
©2 and by setting 𝜋𝑥 � P𝑥 �̃�𝑥 .

5. Numerical explorations

All simulations were run for 𝑁 � 1, 𝑚 � 1 and on a𝑉 � 16�16 lattice. The preliminary results
presented here are obtained at three different values of the coupling �𝑔 � 0.1, 𝑔 � 1.0, 𝑔 � 10�
and they all take into account the autocorrelations, computed with the particular version of the
Γ-method described in [30].
Fig. 1a represents the history plots of the total action (12). In Fig. 1b we show the histories of two
diagnostic observables �̄�1 �

1
𝑉
<𝑥 𝜑

1
𝑥 and �̄�

2
� <𝑎� 1

𝑉
<𝑥 𝜑

𝑎
𝑥�2.

Looking at the behavior of �̄�2 as a function of the three values of the coupling 𝑔, we see indication
of a crossover between a symmetry-broken and an unbroken phase.
Fig. 2 shows the fermionic two-point function 𝐶�𝑡� � <𝑥�𝜓1�𝑡, 𝑥�𝜓2�0�� at the three values of 𝑔
and the effective mass 𝑀�𝑡�, defined from the asymptotic form of the correlator

𝐶�𝑡� � 𝐴 cosh �𝑚 �𝑡 � 𝑁𝑡

2 
� , (20)

by means of the equation

𝐶�𝑡 � 1�
𝐶�𝑡� �

cosh �𝑀�𝑡� �𝑡 � 1 � 𝑁𝑡

2 ��
cosh �𝑀�𝑡� �𝑡 � 𝑁𝑡

2 �� . (21)
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(b) �̄�1 (left) and �̄�
2 (right).

Figure 1: History plots for the three different values of the coupling 𝑔 � 0.1, 𝑔 � 1, 𝑔 � 10.

We see that, as expected, the effective mass is large in the symmetric phase and small in the
symmetry-broken phase.

As mentioned above, these simulations ignore a potential sign fluctuation of the fermionic
determinant. Its possible impact is not yet clear and will be object of future study.
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Figure 2: Fermion two-point function 𝐶�𝑡� (left) and the effective mass 𝑀�𝑡� (right) expressed in lattice
units. Errors are only statistical.
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