
Towards Automatic Tutoring of Custom
Student-Stated Math Word Problems

Pablo Arnau-González1[0000−0001−9048−4659], Ana
Serrano-Mamolar2[0000−0002−0027−7128], Stamos
Katsigiannis3[0000−0001−9190−0941], and Miguel

Arevalillo-Herráez1[0000−0002−0350−2079]

1 Departament d’Informàtica, Universitat de València, Valencia, Spain
{pablo.arnau, miguel.arevalillo}@uv.es

2 Departamento de Ingenieria Informatica, Universidad de Burgos, Burgos, Spain
asmamolar@ubu.es

3 Department of Computer Science, Durham University, Durham, UK
stamos.katsigiannis@durham.ac.uk

Abstract. Math Word Problem (MWP) solving for teaching math with
Intelligent Tutoring Systems (ITSs) faces a major limitation: ITSs only
supervise pre-registered problems, requiring substantial manual effort to
add new ones. ITSs cannot assist with student-generated problems. To
address this, we propose an automated approach to translate MWPs
to an ITS’s internal representation using pre-trained language models
to convert MWP to Python code, which can then be imported easily.
Experimental evaluation using various code models demonstrates our
approach’s accuracy and potential for improvement.

Keywords: Math Word Problems · Algebra Tutoring · Intelligent Tu-
toring Systems · Automatic Code Generation.

1 Introduction

Math Word Problem (MWP) solving is the task of providing a numerical solution
to a mathematical problem expressed in natural language [2]. The computation
of the numerical answer of the MWP requires the correct identification of the
quantities expressed in the problem statement, together with the relationships
between these quantities [4]. MWPs are widely used in Intelligent Tutoring Sys-
tems (ITSs) to teach math and arithmetic by emulating human tutor tasks such
as interpreting problem statements, validating processes, and adapting problems
to individual learners [1]. However, ITSs are limited to supervising registered
problems and cannot assist with self-introduced problems, as they have to be
registered in the system’s own knowledge representation schema.

In this work, we present a two-stage process to automate the encoding of
problem solutions from natural language statements. A large code model, i.e. a
Large Language Model (LLM) trained on source code, generates an intermedi-
ate representation of the problem solution as Python code, which can then be



2 P. Arnau-González et al.

used to create a bipartite graph solution specification using compiler technology.
This automation has benefits for learners and experts, enabling problem-specific
supervision and easy addition of new exercises to the ITS. In our evaluation
on a dataset of 1,000 MWP, our method correctly solved 39% of the problems,
consistent with other state-of-the-art MWP solving methods, while at the same
time facilitating the automated encoding of MWPs for ITS.

2 Proposed Methodology

Given a natural language problem description S that consists of n words wi, S =
{w0, w1, ..., wn−1}, the proposed approach will generate Python source code that
first defines a list QS of m quantities that appear in S, QS = {q0, q1, ..., qm−1},
and then computes and returns the numerical answer yS to the problem S. The
main benefit of proposing a solution expressed in source code is that it allows to
construct a graph using the mathematical relations between the quantities, and
simultaneously allows for the automatic naming of the identified quantities so
that the system is capable of semantically matching the user input to the cor-
rect quantity. The generated Python source code is essentially an intermediate
representation of the MWP that can be subsequently converted to the internal
representation of an ITS in an automated manner. To generate Python code for
a MWP, we propose initialising a LLM’s prompt with an example problem state-
ment and the expected output code, followed by the target problem statement.
The example problem is introduced as a code comment followed by a function
definition (sol()), with known quantities defined in a Map-like structure using
Python’s dictionary data structure, as shown in Fig. 1a. One operation is de-
fined per line until the solution is defined and returned. The model output is the
source code of the sol() function for the target problem, as shown in Fig. 1b.
The code can then be compiled into the required representation for any ITS.

The pre-trained LLMs examined in this work are the 350M, 2B, 6B, and
16B parameter variations of Saleforce’s CodeGen [9] model (“mono” version), a
transformer-based model trained on a general text corpus and fine-tuned first
on a corpus with source code from multiple languages and then on a Python
corpus, and the 1B and 6B parameters variations of Facebook’s InCoder [3]
Casual Language model that has been trained on a corpus that contained source
code from Github and StackOverflow.

3 Results

Our proposed approach is evaluated against a common benchmark dataset for
MWP solving, SVAMP [10]. SVAMP is a collection of 1,000 MWP, expressed in
natural language (English), along with the numerical answer and an algebraic
expression to solve the problem. The performance of the examined models on
the SVAMP dataset was evaluated according to the accuracy metric, defined in
this case as the percentage of problems that were solved with the first solution
returned by the model.



Title Suppressed Due to Excessive Length 3

(a) Prompt (b) Output

Fig. 1: Example input problem statement with one example provided to the
model and expected solution for a MWP.

Table 1: Accuracy for the best-performing temperature (t) for each of the exam-
ined models

Model # Params Temperature Accuracy

InCoder [3]
1B 0.1 0.061
6B 0.3 0.174

CodeGen [9]

350M 0.1 0.088
2B 0.1 0.272
6B 0.3 0.335

16B 0.3 0.391
Note: M: Million, B: Billion. Best performance in bold.

For the performance evaluation procedure, a random problem from SVAMP
was selected and manually solved by implementing the respective sol() function,
according to the specifications described in Section 2. This problem was then
used as the initialisation of all the language models’ prompts, in order to ensure
a fair evaluation across the different examined models. Then, each model was
queried with the randomly chosen example problem and the statement for the
problem to be solved, as shown in Fig. 1a. Each model was queried to generate
n = 10 solutions for each of the 1,000 problems of the SVAMP dataset, which
were then tested by running the generated Python source code and evaluating
whether the result was equal to the expected solution or not.

Both examined models (CodeGen, InCoder) were evaluated for all the pub-
licly available parameter number variations. CodeGen was tested for all the
aforementioned model variations, while InCoder was tested for the 1B and 6B
parameter versions. The inference was carried out by tuning Softmax’s tempera-
ture (t) parameter to values 0.1, 0.3, and 0.5. The temperature is used to control
the randomness of a model’s predictions, with higher values of temperature re-
sulting in a model becoming more random and less certain of its predictions,
whereas lower values result in more certain predictions. To this end, each pa-
rameter number variation of the CodeGen and InCoder models was evaluated
three times using the three aforementioned temperature values, respectively.



4 P. Arnau-González et al.

1B 6B
0

0.1

0.2

0.3

0.4

0.5

Parameters

A
cc

ur
ac

y

Facebook InCoder model

t=0.1 t=0.3 t=0.5

(a) Facebook InCoder model

350M 2B 6B 16B
0

0.1

0.2

0.3

0.4

0.5

Parameters

Salesforce CodeGen model

t=0.1 t=0.3 t=0.5

(b) Salesforce CodeGen model

Fig. 2: Accuracy obtained for different temperatures (t) and number of parame-
ters for each model. (a) Facebook InCoder; (b) Salesforce CodeGen.

Results in terms of accuracy, are reported in Table 1 for the temperature
that provided the best accuracy for each examined model variation. From this
table, it is evident that the 16B parameter CodeGen model achieved the best
performance on the SVAMP dataset in terms of the examined metric, reaching
an accuracy of 39.1%. In addition, one of the main takeaways from Table 1 is
that there is a clear relationship between the number of parameters and the
performance, with variants of a model with more parameters achieving higher
accuracy (Pearson’s ρ = 0.77), as shown in Fig. 2a and 2b, for the InCoder and
CodeGen models respectively. Fig. 2 depicts the accuracy for each examined
model variant and temperature value. The figure shows clearly the relationship
between the number of model parameters and the accuracy. However, it also
makes evident that this relationship is not purely linear, but rather it appears
to follow a logarithmic trend. In addition, it is evident that the temperature
parameter has minimal effects on the achieved accuracy.

The presented results compete directly with the latest state-of-the-art MWP
solving methods, with CodeGen-16B’s maximum accuracy of 39.1% outperform-
ing 6 out of the 9 current top performing methods, as shown in Table 2, without
being explicitly designed to solve MWPs. In addition and in contrast to other
available MWP solving methods, the proposed approach enables the automation
of the task of translating MWP from natural language to the internal representa-
tion of ITSs, thus addressing one of their major limitations. Consequently, other
state-of-the-art MWP solving methods cannot replace the proposed approach
for the task at hand, as they cannot provide the required source code represen-
tation of the MWP. It is expected that as large language models get even bigger
in terms of the number of parameters, the proposed approach will be capable of
surpassing the state-of-the-art MWP solving methods without requiring specific
domain knowledge.



Title Suppressed Due to Excessive Length 5

Table 2: Current top performing MWP solving methods on the SVAMP dataset.
Model Year

Problem
Accuracy

encoding
DeductReasoner [5] 2022 No 0.473
Roberta-Graph2Tree [10] 2021 No 0.438
Roberta-GTS [10] 2021 No 0.410
CodeGen-16B (Ours) 2023 Yes 0.391
Graph2Tree [12] 2020 No 0.365
BERT-Tree [8] 2021 No 0.324
GTS [11] 2019 No 0.308
Roberta-Roberta [6] 2022 No 0.303
BERT-BERT [6] 2022 No 0.248
GroupAttn [7] 2022 No 0.215

4 Conclusions

In this work, we presented a method for solving MWPs, expressed in natural lan-
guage, by using Large Language Models to produce Python source code that can
solve the problem and can automatically convert it to the internal representation
of Intelligent Tutoring Systems. Apart from the automated solving of MWPs,
the proposed approach is also capable of naming the quantities in the MWP.
Together, they allow the translation of problem statements into the ITS’ inter-
nal knowledge representation schema, thus allowing learners to add new MWPs
in an ITS and tutors to add new MWPs at scale. Our experimental evaluation
showed that Saleforce’s CodeGen model with 16B parameters achieved the high-
est accuracy (39.1%) for the proposed approach on the SVAMP MWP dataset. In
addition, despite some state-of-the-art MWP solving methods achieving higher
accuracy, they are not able to encode the MWP in a form that would enable
automated import to an ITS, thus they cannot replace the proposed method.

The success of the proposed approach relies heavily on the performance of
code generation models, as shown by the significant performance differences
between the examined CodeGen and InCoder models. However, the observed
correlation between the size of the model and performance suggests that the
quality of the generated solutions will improve with the future development of
more advanced models with a larger number of parameters.

Nevertheless, the proposed solution has some limitations. Since it uses plain
Python, it is not capable of proposing solutions to problems that cannot be arith-
metically solved. In addition, it only generates one solution graph per problem.
Although this is in general the most obvious solution, it is not necessarily the
only one. Future work will seek to find strategies to deal with these weaknesses.
Additionally, it would be interesting to study the different generated source code
snippets in order to synthesise all the possible resolution paths to a given prob-
lem.

Acknowledgements This research has received support from project TED2021-
129485B-C42/C43, funded by the Ministry of Science and Innovation (Strate-



6 P. Arnau-González et al.

gic Projects Focused on the Green and Digital Transition); project PGC2018-
096463-B-I00, funded by MCIN/AEI/10.13039/501100011033 and “ERDF A way
of making Europe”; project AICO/2021/019 and Grupos de Investigación Emer-
gentes, funded by Generalitat Valenciana; MS’22-24 Grant, awarded by Univer-
sity of Valencia funded through NextGenerationEU funds; and project “AGENCY”,
funded by the Engineering and Physical Sciences Research Council [EP/W032481/1],
United Kingdom.

References

1. Arnau, D., Arevalillo-Herráez, M., González-Calero, J.A.: Emulating human
supervision in an intelligent tutoring system for arithmetical problem solv-
ing. IEEE Transactions on Learning Technologies 7(2), 155–164 (2014).
https://doi.org/10.1109/TLT.2014.2307306

2. Bobrow, D.G.: Natural language input for a computer problem solving system.
Tech. Rep. AIM-066, Massachusetts Institute of Technology (1964)

3. Fried, D., Aghajanyan, A., Lin, J., Wang, S., Wallace, E., Shi, F., Zhong, R., Yih,
W.t., Zettlemoyer, L., Lewis, M.: Incoder: A generative model for code infilling
and synthesis. arXiv:2204.05999 (2022)

4. Jie, Z., Li, J., Lu, W.: Learning to reason deductively: Math word problem solving
as complex relation extraction. In: Annual Meeting of the Association for Compu-
tational Linguistics (2022)

5. Jie, Z., Li, J., Lu, W.: Learning to Reason Deductively: Math Word Problem Solv-
ing as Complex Relation Extraction. In: Proceedings of the 60th Annual Meeting
of the Association for Computational Linguistics. pp. 5944–5955 (2022)

6. Lan, Y., Wang, L., Zhang, Q., Lan, Y., Dai, B.T., Wang, Y., Zhang, D., Lim,
E.P.: Mwptoolkit: An open-source framework for deep learning-based math word
problem solvers. In: Proceedings of the AAAI Conference on Artificial Intelligence.
vol. 36, pp. 13188–13190 (Jun 2022). https://doi.org/10.1609/aaai.v36i11.21723

7. Li, J., Wang, L., Zhang, J., Wang, Y., Dai, B.T., Zhang, D.: Modeling intra-relation
in math word problems with different functional multi-head attentions. In: Proceed-
ings of the 57th Annual Meeting of the Association for Computational Linguistics.
pp. 6162–6167. Florence, Italy (Jul 2019). https://doi.org/10.18653/v1/P19-1619

8. Li, Z., Zhang, W., Yan, C., Zhou, Q., Li, C., Liu, H., Cao, Y.: Seeking patterns, not
just memorizing procedures: Contrastive learning for solving math word problems.
arXiv preprint arXiv:2110.08464 (2021)

9. Nijkamp, E., Pang, B., Hayashi, H., Tu, L., Wang, H., Zhou, Y., Savarese, S., Xiong,
C.: Codegen: An open large language model for code with multi-turn program
synthesis. ArXiv preprint, abs/2203.13474 (2022)

10. Patel, A., Bhattamishra, S., Goyal, N.: Are nlp models really able to solve simple
math word problems? In: Proceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies. pp. 2080–2094 (2021)

11. Xie, Z., Sun, S.: A goal-driven tree-structured neural model for math word prob-
lems. In: Proceedings of the 28th International Joint Conference on Artificial In-
telligence. pp. 5299–5305 (2019)

12. Zhang, J., Wang, L., Lee, R.K.W., Bin, Y., Wang, Y., Shao, J., Lim, E.P.: Graph-
to-tree learning for solving math word problems. In: Proc. of the 58th Annual
Meeting of the Association for Computational Linguistics. pp. 3928–3937 (2021)


