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ABSTRACT: The Material Point Method (MPM) is advertised as the method for large deformation analysis of geotechnical 

problems.  However, the method suffers from several instabilities which are widely documented in the literature, such as: material 

points crossing between elements, different number of points when projecting quantities between the grid and points, etc.  A key 

issue that has received relatively little attention in the literature is the conditioning of the linear system of equations due to the 

arbitrary nature of the interaction between the physical body (represented by material points) and the background grid (used to 

solve the governing equations).  This arbitrary interaction can cause significant issues when solving the linear system, making 

some systems unsolvable or causing them to predict spurious results.  This paper presents a cut-FEM (Finite Element Method) 

inspired ghost-stabilised MPM that removes this issue.   
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1 INTRODUCTION 

The Material Point Method (MPM, Sulsky et al., 1994) 

developed from Particle In Cell (PIC) and FLuid 

Implicit Particle (FLIP) approaches as a large 

deformation analysis approach for solid mechanics.  

The core idea behind the method is to decouple the 

physical deformation of the material from the 

underlying background mesh that is used to solve the 

governing equations.  This allows the method to handle 

very large deformations whilst avoiding issues such as 

mesh distortion, remeshing and remapping of material 

and state variables.  The MPM has been widely adopted 

in both the computational mechanics and computer 

graphics communities and applied to several areas of 

geotechnical engineering, such as slope stability and 

soil-structure interaction.  

A well-documented issue with the original MPM is 
the instability that arises as Material Points (MPs) cross 

between background grid cells.  This so-called cell 

crossing instability is caused by the sudden transfer of 

mass and stiffness between elements and, more 

importantly, the change of sign of the internal force 

contribution of the crossing material point to the 

background grid.  Several approaches have been 

proposed to avoid this instability, such as the 

Generalised Interpolation Material Point Method 

(GIMPM, Bardenhagen and Kober, 2004), CPDI 

approaches (Sadeghirad et al., 2011), and B-Spline 

based MPMs (Yamaguchi et al., 2021).  All the 

approaches remove (or reduce) the instability by 

increasing the continuity of the basis functions between 

adjacent elements of the background grid.  However, the 

MPM (and its variants) suffer from another instability 

that, at least to date, has received very little attention.  

This instability is linked to the arbitrary nature of the 

position of the physical body being analysed relative to 

the background grid.  This can cause very small 

dependencies (i.e. very small basis function values) to 

develop between the nodes of the background grid and 

the MPs.  As these dependencies are used to formulate 

the mass and stiffness matrices, which are used to solve 

the governing equations on the background grid, the 

resulting linear system of equations can become ill 

conditioned, with the associated difficulties in finding a 

solution and the accuracy of said solution.   

This paper presents a cut-Finite Element Method 

(cut-FEM) inspired approach to overcome this issue via 

stabilisation of the background grid elements near the 

boundary of the physical domain, whilst not requiring 

explicit representation of the physical boundary.  The 

method is applied to a classic geotechnical engineering 

problem, demonstrating the importance of the 

stabilisation for robust MP-based simulations.                  

2 MATERIAL POINT METHOD 

As outlined in the introduction, the MPM discretises a 

physical body (or domain, Ω) via a collection of MPs 

with associated position, {𝑥𝑝}, volume, 𝑉𝑝, mass, 𝑚𝑝, 

stress, {𝜎𝑝}, etc.  whilst the governing equations are 

assembled and solved on the vertices, 𝑣, of the 

background grid.  This paper is restricted to solving 

quasi static solid mechanics stress analysis problems 
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within an updated Lagrangian finite deformation 

framework where the governing equations are solved in 

the current or deformed configuration.   

The Galerkin weak statement for equilibrium for 

each background cell, 𝐸, is 

 

∫ [∇𝑥𝑆𝑣𝑝]
𝑇
{𝜎𝑝}𝑑𝑣

𝜑𝑡(𝐸)
− ∫ [𝑆𝑣𝑝]

𝑇
{𝑏}𝑑𝑣

𝜑𝑡(𝐸)
= 0  (1) 

 

where 𝜑𝑡 is the motion of the material body, [𝑆𝑣𝑝] and 

[∇𝑥𝑆𝑣𝑝] contain the basis functions that map 

information between the MPs and the vertices of the 

background grid and their spatial derivatives, and {𝑏} 
are the body forces acting over the material volume, 𝑣.  

The Cauchy stress at the MPs, {𝜎𝑝}, is based on a linear 

relationship between logarithmic (or Hencky) strains 

and Kirchhoff stress and an exponential map of the 

plastic flow rule to recover the infinitesimal format of 

elasto-plastic stress update algorithms.     

The key steps in an MPM analysis are shown in 

Figure 1 (ordered top left to bottom right).  The total 

imposed load is split into 𝑛 time/load steps and the 

following algorithm followed: 

1. The interaction of the physical body, discretised 

by MPs, and the background grid is determined 

via evaluation of the basis functions,  𝑆𝑣𝑝, of the 

grid vertices at the MP locations. 

2. Information held at the MPs, such as stress, 

body forces and stiffness, is mapped to the 

nodes of the background grid using the basis 

functions and spatial derivatives.  

3. The governing equations are assembled on the 

active background grid nodes (that is, at the 

nodes with non-zero 𝑆𝑣𝑝 values). 

4. The governing equations are solved on the 

background grid and the incremental 

displacements of the nodes determined that 

satisfy the governing equations.   

5. Information is mapped from the nodes to the 

MPs, updating information such as MP 

positions, deformation, stress, etc. 

6. Finally, the background grid is reset (or 

replaced) and the process repeated.   

2.1 Implicit solution 

Although the techniques described in this paper can be 

applied to all variants of the MPM, this paper is focused 

on quasi-static analysis where the governing equations 

are solved (Step 4 in the above algorithm) using an 

implicit Newton-Raphson approach.  The 

implementation is based on the AMPLE (A Material 

Point Learning Environment) open-source code of 

Coombs & Augarde (2020), which has its origins in the 

work of Charlton et al. (2017).  This solution method 

requires the internal force and tangent stiffness to be 

repeatedly evaluated and used to update the incremental 

displacements over the load/time step until the 

discretised weak form statement of equilibrium 

converges within a given tolerance.  A key part of this 

process is the inversion of the current tangent stiffness 

matrix (or rather a linear solution involving the tangent 

stiffness), where the solution accuracy/feasibility is 

highly dependent on the conditioning of the stiffness 

matrix.   

 

 

Figure 1. MPM steps (top left to bottom right) 

 

2.2 Conditioning issues 

The condition number of a linear system of equations is 

the ratio of its largest and smallest eigenvalues.  For the 

MPM the intersection between the physical domain 

(described by the MPs) and the background grid (where 

the equations are solved) is arbitrary.  This can lead to 

very small overlaps between the domain and some 

elements, resulting in very small basis function values.  

The issue is compounded by domain-based MPMs, such 

as the Generalised Interpolation MPM (GIMPM), 
where each MP is represented by a rectangular domain 

and the basis functions are determined by integrating 

the grid shape functions over each MP domain.  Small 

overlaps between MP domains and elements can 
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therefore lead to very small 𝑆𝑣𝑝 and  ∇𝑥𝑆𝑣𝑝 values.  

These basis functions and their spatial gradients are 

used to form the mass and stiffness matrices, 

respectively, leading to unbounded smallest 

eigenvalues and therefore condition numbers.  

 

 

Figure 2. Stiffness matrix condition number 

  

This issue is demonstrated in Figure 2 via a trivial 

conceptual problem where a MP domain (shown by the 

shaded region and associated white circles) translates 

through a background grid (nodes are shown by the 

back points).  The base of the background grid is 

restrained by a roller boundary condition (zero 𝑦 

displacement) and the node at 𝑥 = 2ℎ is also restrained 

in the 𝑥 direction.  In this example the material’s 

Young’s modulus was 1Pa, the Poisson’s ratio was set 

to zero and ℎ = 1m.  The 2 × 1m physical domain was 

discretised by eight MPs. Figure 2 provides the 

condition number, 𝜅([𝐾]), of the reduced stiffness 

matrix1 for the MPM and GIMPM for a translation of 

𝑎 ∈ [0,2ℎ].   
The response of the GIMPM highlights the issue of 

the unbounded nature of the condition number due to 

small overlaps between the mesh and the physical 

domain at 𝑎 = ℎ and 𝑎 = 2ℎ, where 𝜅([𝐾]) tends to 

infinity due to very small ∇𝑥𝑆𝑣𝑝 values.  The condition 

of the MPM stiffness matrix is bounded until the 

boundary conditions no longer restrain the 𝑥 motion of 

 
1 The reduced stiffness matrix refers to the stiffness matrix 

where the rows and columns associated with constrained 

degrees of freedom have been eliminated.    

the domain (which is reasonable for any numerical 

method).  However, the standard MPM suffers from 

several other issues, principally the well documented 

cell crossing instability.  In addition, the condition 

number of the mass matrix for any MPM is unbounded 

as the mass matrix is based on the basis functions, which 

can be arbitrarily small.    

3 GHOST STABILISATION 

In this paper the ghost stabilisation approach (Burman, 

2010) is adopted to remedy the condition number issues 

highlighted in the previous section.  The key idea of 

ghost stabilisation is to enforce additional continuity on 

the system of equations being solved by penalising 

jumps in the spatial gradient of the solution at the 

physical boundary (Sticko et al., 2020). These 

additional constraints stabilise the degrees of freedom 

associated with the smallest eigenvalues of the linear 

system and therefore introduce a bound on the condition 

number. The technique is widely used in the cut/non-

matching mesh FEM literature but has received little 

attention in other areas of computational mechanics.   

 

 

Figure 3. MPM boundary interpretation (reproduced from 
Coombs (2022)) 

 

An issue with applying the technique to the MPM is 

that most MPMs do not include an explicit presentation 

of the physical boundary of the problem domain. One 

way to approach this is to reconstruct the boundary of 

the computational domain using information about 

populated and unpopulated elements of the background 

grid, as shown in Figure 3.  Boundary elements are 

defined as those elements that contain MPs but share a 

face with an unpopulated element.  Ghost stabilisation 

can then be applied over the boundary element edges (Γ, 

red lines in Figure 3), defined as the boundary element 

faces shared with other populated elements.   

3.1 Stiffness contribution and implicit solution 

The additional stiffness associated with the ghost 

stabilisation term can be expressed as an integral over 
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the element faces of the background grid being cut by 

the boundary of the physical domain, Γ (see Figure 3).  

Assuming a background grid of bi-linear quadrilateral 

elements (see Coombs (2022) for details), the stiffness 

associated with the ghost stabilisation can be expressed 

as 

 

[𝐾𝑔] =
𝛾𝑘ℎ3

3
∫ [𝐺]𝑇[𝑚][𝐺]
Γ

𝑑Γ,        (2) 

 

where 𝛾𝑘 is a stabilisation parameter, ℎ is the size of the 

background grid face, [𝐺] contains spatial derivatives of 

the basis functions for the elements attached to the face 

under consideration  

 
[𝐺] =  [[𝐺+] −[𝐺−]].           (3)  

 

The superscripts denote the positive and negative 

elements (see Figure 3), with [𝐺+] and [𝐺−] sharing a 

common format.  For example for 2D analysis 

 

[𝐺+] =

[
 
 
 
 

  

𝑁1
+,𝑥 0 …

0 𝑁1
+,𝑦 …

0 𝑁1
+,𝑥 …

𝑁1
+,𝑦 0 …

  

]
 
 
 
 

 ,         (4) 

 

where 𝑁𝑖
+ are the basis functions of the positive element 

and the subscript 1 denotes the local node number. 

Finally, [𝑚] = [𝑛][𝑛]𝑇  where for 2D analysis  

 

[𝑛]𝑇 = [  
𝑛𝑥 0 0 𝑛𝑦

0 𝑛𝑦 𝑛𝑥 0
  ],         (5) 

 

𝑛𝑥 and 𝑛𝑦 are the components of the vector normal to 

the boundary of the positive element (see Figure 3).     

The appropriate value of the stabilisation parameter, 

𝛾𝑘, is a point of debate in the literature, with most 

authors suggesting that it should be related to the P-

wave modulus of the material, such as 𝛾𝑘 = (2𝜇 + 𝜆) ⋅
10−4 (Hansbo et al., 2017) where 𝜆 and 𝜇 are the Lame 

parameters.  In the author’s experience  𝛾𝑘 should be set 
to the minimum value that stabilises the analysis so that 

the stability terms do not onerously impact on the 

physical solution close to the boundary. 
Although in general the spatial derivatives of the 

basis functions in [𝐺] and the normal direction to the 

element faces will depend on the incremental 

displacements within the current step, it is assumed that 

the ghost stabilisation contribution is constant over a 

given load/time step based on the configuration at the 

start of the step.  This is reasonable as the exact value of 

the stabilisation contribution is arbitrary – the key 

contribution of the additional stiffness is to bound the 

lowest eigenvalue of the linear system being solved.  It 

also allows the associated force contribution to the 

equilibrium equations to be determined based on the 

incremental nodal displacements, {Δ𝑑}, via 

 

{𝑓𝑔} = [𝐾𝑔]{Δ𝑑}.             (6) 

 

This ghost force acts as an additional internal force 

contribution to the discretised weak form statement of 

equilibrium.  Therefore, inclusion of the ghost 

stabilisation approach requires the ghost stiffness to be 

evaluated at Step 1 (see Section 2 for the key MPM 

steps) and then the current incremental nodal 

displacements to be used in Step 4 to determine the 

ghost force contribution.   

4 NUMERICAL ANALYSIS 

This section provides two analyses to demonstrate the 
ability of the ghost stabilisation approach to improve the 

robustness of the MPM for geotechnical analysis.  The 

method was implemented within the AMPLE code of 

Coombs & Augarde (2020).   

4.1 Compaction under self-weight 

The first example considers the convergence behaviour 

of the elastic compression of a plane strain column with 

an initial height of 𝑙0 = 50m under self-weight (shown 

on the right of Figure 4).  The material had a Young's 

modulus of 10kPa and a Poisson's ratio of zero.  The 

background was comprised of square bi-linear elements 

initially populated by a 2 by 2 equally spaced GIMPs.  

The mesh was constrained by roller boundary 

conditions on the left and right boundaries as well as the 

base. A body force per unit volume of 𝑏 = 800N/m3 

was applied over 40 equal load steps, causing the 

physical body to compress by approximately half its 

original height. 𝛾𝑘 = 10−2𝐸 = 100Pa for all analyses.  

 

 

Figure 4. Column compression stress error 

 

Figure 4 shows the normalised stress error 

convergence behaviour of the ghost-stabilised GIMPM 
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with background grid refinement.  The error is defined 

as 

 

error =
1

𝑏𝑙0𝑉
∑ |𝜎𝑦𝑦

𝑝 − 𝜎𝑦𝑦
𝑎 |𝑉𝑝𝑝         (7) 

 

where 𝜎𝑦𝑦
𝑝

 and 𝜎𝑦𝑦
𝑎 = 𝑏(𝑙0 − 𝑌𝑝) are the numerical and 

analytical normal stress in the vertical direction at each 

MP, 𝑉𝑝 is the original MP volume, 𝑉 = ∑ 𝑉𝑝𝑝  is the total 

original volume of the column, 𝑏 is the imposed body 

force per unit volume and 𝑌𝑝 is the original vertical 

position of the MP.    

The convergence rate is between linear and quadratic, 

which is consistent with the basis functions of the 

GIMPM method and the results available in the 

literature (for example see Charlton et al., 2017) and is 

not degraded by the ghost stabilisation.   

4.2 Slope failure 

The second example considers the deformation of a 45 

degree elasto-plastic plane strain slope due to 

gravitational loading.  The geometry of the slope is 

shown in Figure 5, where: 𝐴 = (0,12)m, 𝐵 =
(10,12)m, 𝐶 = (15,7)m and 𝐷 = (30,7)m.  The 

material was represented by a linear elastic-perfectly 

plastic von Mises constitutive model with a Young’s 

modulus of 1MPa, a Poisson’s ratio of 0.3 and a von 

Mises yield strength of 𝜌𝑦 = 15kPa.  The yield function 

is defined as 

 

𝑓 = 𝜌 − 𝜌𝑦 = 0,              (8) 

 

where 𝜌 = √2𝐽2. 𝐽2 is the second invariant of the 

deviatoric stress    

 

𝐽2 = 
1

2
𝑡𝑟([𝑠][𝑠]),      [𝑠] = [𝜏] −

1

3
𝑡𝑟([𝜏])        (9) 

 

and [𝜏] is the Kirchhoff stress. A weaker layer (𝑦 ∈
[7,7.5]m) was introduced in the model where the yield 

strength was reduced to of 𝜌𝑦 = 7.5kPa, as shown by 

the light grey region in Figure 5.  The material had a 

uniform initial density of 2,400kg/m3.  

 

 

Figure 5. Slope geometry & boundary conditions 

 

The slope was analysed with three different background 

grids, where ℎ = 1.0, 0.5 and 0.25m, and three different 

generalised interpolation MP resolutions with 22, 32 

and 42 equally spaced material points per background 

grid cell, giving a total number of MPs between 1,095 

and 69,800.  The physical geometry was defined by 

removing any material points outside of the slope 

geometry defined by points A through D in Figure 5.     

Gravitational loading of 9.81m/s2 was applied over 

40/ℎ equal increments (load steps). The stabilisation 

parameter was initially set to 𝛾𝑘 = 10−2𝐸 = 10kPa. 

Table 1 provides the mean and maximum (in 

brackets) Newton-Raphson (NR) iterations for the 

standard GIMPM and the Ghost-Stabilised (GS) 

GIMPM for the analyses that were able to complete all 

of the load steps (indicated by the ).  The unstable 

analyses are indicated by the  and in those cases the 

final stable load step number is reported. The maximum 

permitted number of NR iterations was set to 20, with a 

normalised out of balance force residual tolerance of 

10−6. 

 

Table 1. Mean and (maximum) number of NR iterations or 

final stable load step for unstable analyses 

ℎ (m) 1.0 0.5 0.25 

22 MPs  5.50(7)  45 6.11(20) 

32 MPs  23  56  57 

42 MPs  5.48(6) 5.49(8)  5.83(8) 

22 GSMPs  5.50(7)  5.55(7)  5.94(8) 

32 GSMPs  5.48(6)  5.49(7)  5.85(8) 

42 GSMPs  5.53(7)  5.48(7)  5.83(7) 

 

Only 5 of the 9 standard GIMPM analyses were able 

to apply the full gravitational load and there is no 

obvious pattern of the grid/MP properties of the stable 

analyses.  The other analyses failed to converge at a 

particular load step due to poor conditioning of the 

linear system of equations resulting in non-physical 

excessive displacements of the background grid and 

numerical explosion of the MPs. Note that one of the 

ℎ = 0.25m, 42MPs/element load steps failed to satisfy 

the governing equations to 10−6 within the 20 load 

steps, however the analysis remained stable and all 

subsequent load steps converged. All the ghost-

stabilised analyses were able to apply the full 

gravitational load, irrespective of the number of MPs 

and the size of the background grid.  

 

Table 2. 𝛾𝑘 influence on the mean and (maximum) number 

of NR iterations for ℎ = 1m and 32 MPs/element  

𝛾𝑘/𝐸 0 10−8 10−6 10−4 10−2 

  5.85(20) 5.50(7) 5.50(7) 5.48(6) 

    

Table 2 the mean and maximum (in brackets) NR 

iterations for the ghost-stabilised GIMPM with ℎ = 1m 
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and 32 MPs/element for different values of stabilisation 

parameter. The number of iterations is relative 

insensititve to the stabilisation parameter magnitude for 

𝛾𝑘 ≥ 10−6𝐸.  Once the parameter reduces below this 

the analysis struggles to converge, reaching the 

maximum number of NR iterations for load step 24 

when 𝛾𝑘 = 10−8𝐸 as this value is insufficient to 

stabilise the elements at the edge of the physical 

domain.  The subsequent steps converge but with 

quesitonable validity as subsequent steps are based on 

the non-converged configuration.   

Figures 6 and 7 show the deformed MPs at the end of 

the analysis shaded according to 𝜎𝑥𝑦 for the standard 

GIMPM (Figure 6) and ghost-stabilised GIMPM 

(Figure 7) with ℎ = 0.25m and 42MPs/element.  The 

weaker layer is clearly visible in the shear stress 

distribution. The difference in the shear stress 

distribution between the standard and ghost-stabilised is 

most visible between along the slope (B to C, Figure 5), 

where the ghost stabilisation removes the stress 

oscillations seen in the standard GIMPM.  

 

 

Figure 6. Deformed slope shaded by 𝜎𝑥𝑦 for the standard 

GIMPM 

 

 

Figure 7. Deformed slope shaded by 𝜎𝑥𝑦 for the ghost-

stabilised GIMPM 

 

5 CONCLUSIONS 

This paper has presented a ghost-stabilised MPM 

applied to geotechnical analysis.  The key advantage of 

the method is it introduces a bound on the conditioning 

of the linear system of equations solved as part of an 

implicit MPM solution algorithm.  This significantly 

improves the stability of the method and removes much 

of the uncertainty regarding if a particular analysis will 

run or not based on the interactions between the MPs 

and the background grid.  Without confidence in the 

stability of the method it is unlikely that the MPM will 

become a useful engineering tool for geotechnical 

analysis.   

Although this paper has focused on implicit quasi-

static analysis, the approach is equally applicable to 

explicit dynamic MPMs.  In this case the mass matrix is 

stabilised in a similar way to the stiffness stabilisation 

detailed in this paper, see Coombs (2022) for details.  
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