9

Skyrmions

9.1 The Skyrme model

The Skyrme model [377, 379] is a nonlinear theory of pions in three spatial
dimensions, with the Skyrme field, U(t,x), being an SU{2)-valued scalar.
Although not involving quarks, it can be regarded as an approximate, low
energy effective theory of QCD, becoming exact as the number of quark
colours becomes large [428]. Remarkably, and this was Skyrme’s main
motivation for constructing and studying this model. it has topological
soliton solutions that can be interpreted as baryons. These solitons are
called Skyrmions.
The model is defined by the Lagrangian

L = / {%Tr(aﬂuaﬂbff)

1 & rFT TrT 4 T
+327Tr([0,,ou*.a,,ob*][a' UU*,&%U*])} 3z, (9.1)

where Fir and e are parameters, whose values are fixed by comparison
with experimental data. These parameters can be scaled away by using
energy and length units of Fr/de and 2/eF; respectively, which we adopt
from now on. In terms of these standard units the Skyrme Lagrangian
can be written as

L= / {-—%Tr(RﬂR“ ) + %Tx-([ff,,.ﬂ,,}[m,n“])} d*r. (9.2)

where we have introduced the su(2)-valued current R, = (9,U)UT. The
Euler-Lagrange equation which follows from (9.2) is the Skyrme field equa-
tion

3, (R“ + 3[R R, R“]}) ~0. (9.3)
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350 Skyrmions

which is a nonlinear wave equation for U(t,x). An interesting feature of
(9.3) is that it is in the form of a current conservation equation J, R* = (.
where R* = R* + }[R",[R,. R"]).

One imposes the boundary condition U(x) — 12 as |x| — oc. The
vacuun, the unique field of minimal energy, is then U(x) = 1, for all x.

The Skyrme Lagrangian has an (SU(2) x SU(2))/Z2 = SO(4) chiral
svmmetry corresponding to the transformations U — O,UQ,, where O,
and O, are constant elements of SU(2). However, the boundary condi-
tion U(>c) = 1, spontaneously breaks this chiral symmetry to an SO(3)
isospin symmetry given by the conjugation

U OUO, O e SU?2). (9.4)
In order to make explicit the nonlinear pion theory, we write
U=o+im- -1, (9.5)

where T denotes the triplet of Pauli matrices, w = (m), 72, 73) is the
triplet of pion fields and o is an additional field determined by the pion
fields through the coustraint o? + 7 - & = 1, which is required since
U € SU(2). Not only the magnitude, but also the sign of ¢ may be
regarded as determined by the requirement of continuity of the field. and
the boundary conditions w(>c) = 0, o(>) = 1. In terms of the pion
fields. an isospin transformation is w — M, where Al is the SO(3)
matrix corresponding to the SU(2) matrix O.

1
Al = §Tr(r,-0r,of). (9.6)

Pion particles arise from the quantization of small fluctuations of the
pion field around the vacuum m = 0, 0 = 1. Note that substituting (9.5)
into the Lagrangian (9.2) reveals that the pions are massless. They are
the Goldstone bosons of the spontaneously broken chiral symmetry. An
additional term '

Liass = m?r/Tr(U - ]2)(131' (97)

can be included in the Lagrangian of the Skyrme model and gives the
pions a (tree-level) mass m,. As most of our discussion is independent of
this extra term we do not include it at this stage, but in Section 9.9 we
address the modifications that it generates.

If one restricts to static fields, U(x), then the Skyrme energy functional
derived from the Lagrangian (9.2) is

1 1 1 '
= ﬁ?ﬁ/{'ET’(R:RI) - TéTr([&’RJ][RﬁRJ])} dr, (93
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where we have introduced the additional factor of 1/1272 for later conve-
nience. Static solutions of the Skyrme field equation (9.3) are therefore
critical points (either minima or saddle points) of this energy.

At first sight U, at a fixed time, is a map from R3 into S3, the group
manifold of SU(2). However, the boundary condition implies a one-point
compactification of space, so that topologically U : 83 — 3. where the
domain §% is to be identified with R* U {oc}. As discussed in Chapter
3 the homotopy group m3(S3) is Z, which implies that maps between 3-
spheres fall into homotopy classes indexed by an integer, which we denote
by B. This integer is also the degree of the map U and has the explicit
representation

_ 1

T / e Tr (RiR; Ry) dz, (9.9)

where R, = (Q;U)U', as before. As B is a topological invariant, it is
conserved under continuous deformations of the field, including time evo-
lution. It is this conserved topological charge which Skyrme identified
with baryon number. B is the principal property of a Skyrmion.

The presence of a topological charge is, by itself, not sufficient to en-
sure the existence of stable topological solitons since we also need to evade
Derrick’s theorem [107]. But note that the static Skyrme energy decom-
poses into two components, E = E; + F,, corresponding to the terms
which are quadratic and quartic in spatial derivatives of the Skyrme field.
Under a rescaling of the spatial coordinates x — ux, the energy becomes

1
e(p) = ;Ez + pEy. (9.10)

The two terms therefore scale in opposite ways, leading to a minimal value
of e(u) for a finite u # 0. This implies that any soliton will have a well
defined scale and will neither expand to cover all of space nor contract to
be localized at a single point. Note that for any static solution, and in
particular for a Skyrmion, which is the minimal energy configuration in
a given topological sector, e(u) must take its minimal value when p = 1,
so the energy contributions from the quadratic and quartic terms are
exactly equal. From this discussion it is clear why the sigma model (the
Lagrangian consisting of only the first term in (9.2)) does not support
stable solitons. This problem is cured by the addition of the second term
in (9.2), known as the Skyrme term. Clearly any term which is of degree
4 or higher in the spatial derivatives would do equally well in this respect,
but the Skyrme term is the unique expression of degree 4 which is Lorentz
invariant and for which the resulting field equation remains second order
in the time derivative.



352 Skyrmions

A more geometrical description of the static Skyrme energy exists {282,
which is useful in several contexts. As in nonlinear elasticity theory, ti e
energy density of a Skyrme field depends on the local stretching associated
with the map U : R® — 83. For this formulation, let us introduce tho
strain tensor D;;, defined at each point x € R? by

1
Dyj = =5 Te(RiR;), (9.11)

which is a symmetric, positive definite 3 x 3 matrix, and which can he
thought of as quantifying the deformation induced by the map U. Tie
image under U of an infinitesimal sphere of radius £ and centre x in R3, t¢
leading order in ¢, is an ellipsoid with principal axes ey, g2, £A3, where
A2, A3, A} are the three non-negative eigenvalues of the matrix D, j- The
signs of Aj. Az and Az are chosen so that A A2Ag is positive (negative) if [
is locally orientation preserving (reversing). In terms of these eigenvalues.
the static energy E. and baryon number B, can be computed as integrals
over R? of the corresponding densities £ and B given by

1 . 5 1
£ = WIQWQ()\;”-+A§+,\§+A}’,\§+,\§,\§+A§,\f), B= m/\]/\g)\g. (9.12

From the simple inequality

(,\1 + /\2/\3)2 + (A2 )\3/\1)2 + (A3 /\1/\2)2 >0, (9.13)

it follows from the formulae (9.12) that £ > |B} and therefore the Skyrme
energy satisfies the Faddeev-Bogomolny lower bound [126]

E>|B|. (9.14)

In contrast to monopoles and vortices, this bound can not be saturated
for any non-trivial (i.e. B # 0) finite energy configuration. This is because
the bound is attained only when all the eigenvalues of the strain tensor
have modulus 1 at all points in space - an isometry — and this is obviously
not possible since R? is not isometric to $3. Note that the bound can he
attained if the spatial domain is taken to be the 3-sphere of unit radius:
we discuss this further in Section 9.9.

After the baryon number and energy, the most significant characteristic
of a static solution of the Skvrme equation is its asymptotic field, which
satisfies the linearized form of the equation. To leading order, the three
components of the pion field 7 each obey Laplace’s equation, and o can
be taken to be unity. More precisely. w has a multipole expansion, in
which each term is an inverse power of r = |x|, say =+ times a
triplet of angular functions. The leading term, with the smallest I, obeys
Laplace’s equation, whereas subleading terms may not, because of the
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r onlinear aspect of the Skyrme equation. For the leading term, therefore,
t:1e angular functions are a triplet of linear combinations of the spherical
h:armonics Y}, (0, p), with m taking integer values in the range —| <
11 < I. These spherical harmonics can also be expressed in Cartesian
coordinates, which often gives more convenient and elegant formulae for
the asymptotic fields.

One of the few precise results concerning the Skyrme equation (9.3) is
that this multipole expansion can not lead with a monopole term, with
! = 0. The leading term is a dipole or higher multipole. The proof is
as follows [286]. For a static field, the equation implies that the spatial
current

Ri= R+ 3[R, [R). R, (9.15)

has zero divergence and no singularity. Therefore the flux of R; through
a large sphere of radius R (centred at the origin) vanishes, that is,

R,"Ri dSs = 0, .
[S , (9.16)

where n' is the unit outward normal. Now, in the asymptotic region,
R; can be replaced by R;. which in turn simplifies to i(d;w) - 7. For a
monopole asymptotic field,

m== (9.17)
where c is a constant vector, so R; has the leading asymptotic behaviour
—ic-7xi/r}. Then Rin' = —ic- 7/r?, so the flux through the sphere is
—4xic - 7. This vanishes only if ¢ = 0.

Recently, it has been rigorously proved [294] that for any non-vacuum
solution of the Skyrme equation, the multipole expansion is non-trivial.
In other words, the pion field does not vanish to all orders in I, and the
leading term is a multipole satisfying the Laplace equation.

9.2 Hedgehogs

Esteban {123] has proved the existence of a B = 1 Skyrmion. that is.
a minimizer of the energy functional (9.8) within the charge 1 sector,
following earlier work of Kapitansky and Ladyzenskaia [230] in which it
was proved that a minimizer exists within the family of spherically sym-
metric charge 1 Skyrme fields. It is believed to be true, though not yet
proven, that these two minimizers are the same, that is, the minimal
energy Skyrmion in the B = 1 sector is spherically symmetric. Here,
spherically symmetric does not mean that the Skyrme field is just a func-
tion of the radial coordinate r, since it is easily seen that such a field
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must have B = 0. When we refer to a spatial symmetry of a Skyrmiou,
such as spherical symmetry, we mean that the field has the equivariance
property that the effect of a spatial rotation can be compensated by an
isospin transformation (9.4). This implies that both the energy density
£, and baryon density B, are strictly invariant under the symmetry.

The spherically symmetric B = 1 Skyrmion was presented in the orig-
inal work of Skyrme and takes the hedgehog form (cf. Section 4.3)

U(x) = exp {if(r)x- 7} = Un(x). (9.18)

In terms of 7 and o fields,
m=cos f(r)x, o=sinf(r). (9.19)

The name hedgehog derives from the fact that the pion fields of this
configuration point radially outward from the origin at all points in space.
so t = X. f is a real radial profile function with the boundary conditions
f(0) = m and f(>) = 0. The latter condition ensures that U(xc) = 1,.
while the former guarantees that U(0) is well defined and that B = 1.
The value of B is confirmed by substituting the hedgehog ansatz into the
expression (9.9) for the baryon number, giving

B= W/U f'sin? fdr==1(0) = 1. (9.20)

Alternatively. we can easily verify that if f monotonically decreases, then
each point of the target space SU(2) (except U = 13) has exactly one
preimage in R3, with positive Jacobian. )

Substituting the hedgehog ansatz (9.18) into the static Skyrme equation
yields the second order nonlinear ordinary differential equation

a2
(r2 + 2sin? f) " + 2rf' + sin 2f (f” -1~ ”"T‘,Zf) =0. (921

The solution of this equation. satisfying the boundary conditions, can not

be obtained in closed form but it is a simple task to compute it numerically

using a shooting method. The numerical solution is presented in Fig. 9.1.
The energy, given by

1

EF=—
3

x R |
/O {r2f'2 +2sin? f(1 4+ %) + 22 f} dr, (9.22)

r2

is calculated to be E = 1.232, to three decimal places, and so the B =1
Skyrmion exceeds the Faddeev-Bogomolny bound by approximately 23%.
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Fig. 9.1.  The profile function f(r) for the B = 1 Skyrmion.

The Skyrmion described by (9.18) is located at the origin, but it can be
positioned at any point in space and given any orientation by acting with
the translation and rotation groups of R3. The moduli space of charge 1
Skyrmions is therefore six-dimensional. In general, it is to be expected
that the moduli space of a charge B Skyrmion is nine-dimensional, since
in addition to translations and rotations there is also the action of the
three-dimensional isospin group (9.4). However, for B = 1, an isospin
transformation is equivalent to a spatial rotation, which is of course why
the Skyrmion is spherically symmetric, so three moduli are lost.

A linearization of Eq. (9.21) reveals the large r asymptotic behaviour
of the profile function, f ~ C/r?, for some constant C, which numerically
is found to be C = 2.16. Therefore, the leading order asymptotic fields
are

1r=§;i. oc=1. (9.23)
In other words, from far away a single Skyrmion resembles a triplet of
orthogonal pion dipoles, with dipole strength 47C. In Section 9.3 we dis-
cuss the asymptotic interactions of well separated Skyrmions, and their
interpretation in terms of dipole-dipole forces.

There are further solutions involving the hedgehog ansatz (9.18). Note
that U is well defined provided f(0) = kx, where k € Z, and a glance at
Eq. (9.20) shows that the field in this case describes a spherically sym-
metric configuration with B = k. The pion field still points radially, but
inwards or outwards. There appear to be solutions of the equation for
the profile function for all values of & [379, 220]. Solutions have been
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constructed numerically for several values. The k = —1 solution is the
antiSkyrmion, whose profile function is obtained from that of the
Skyrmion by the replacement f — —f. For [k| > 1 these hedgehog solu-
tions do not represent the minimal energy Skyrmions with B = k, and
in fact these solutions are not even bound against break-up into |k| well
separated Skyrmions (or antiSkyrmions if £ < 0). For example, the k = 2
hedgehog has an energy E = 3.67 > 1.232 x 2, and has been shown to
have six unstable modes. The hedgehog solutions, for |k| > 1, are there-
fore almost certainly all unstable, saddle points of the energy.

A rigorous proof of the existence of charge B, minimal energy Skyrmions
with [B| > 1 appears to be difficult, and has not vet been found. Their
existence has been established by Esteban [123], but only under the as-
sumption that

Ep<Ep +Ep_p, (9.24)

for all B' € Z—{0. B}. where Ep denotes the infimum of the energy (9.8)
within the space of Skyrme fields with baryon number B'. Esteban (123
was able to prove the weaker inequality

Ep <Ep +Ep_p . (9.25)

but the strict inequality is not vet proved in general. The strict inequality
would prevent the break-up of a charge B field into infinitely separated
clusters of charge B’ and B — B, and would imply that the energy Ep
was attained by a Skyrmion solution. In the following section we present
a physical perspective on these inequalities, in terms of the forces between
well separated Skyrmions. Later, we will also describe the solutions that
have been discovered numerically. that are believed to be the minimal
energy Skyrmions.

9.3 Asymptotic interactions

As noted above, the asymptotic field of a single Skyrmion is that of a
triplet of orthogonal dipoles and we can make use of this interpretation
to calculate the asyinptotic forces between two well separated Skyrmions
by computing the interaction energy of the pair of dipole triplets, It is
convenient to rewrite (9.23) in the form

C

. ) x
7«"_,' = =7 = pj
re

drrd ’

(9.26)
where we have introduced the three orthogonal dipole moments

p; = 4dnCe;. {9.27)
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with {e;} being the standard basis vectors of R*. More generally, the
frame of dipoles may be rotated, but their magnitudes are unchanged.
With the energy normalized as in (9.8) the interaction energy of two
individual dipoles, with moments p,q and relative position vector X, is
given by )

Eip = 5150 8)(a- a)l—;(—l, (9.28)
where 9; = ;)—‘,{—; This is similar to the formula for the interaction energy
of two electric dipoles, but has the opposite sign, because the pion field
is a scalar, so like charges attract.

We can use the translation and isospin symmetries to position the first
Skyvrmion at the origin in standard orientation, and the second Skyrmion
at the point X € R3, with X = |X]| > 1, and with an orientation de-
termined by the SU(2) matrix O. The dipole moments of the second
Skyrmion are then q; = Afp;, where M is the SO(3) matrix correspond-
ing to O, as given in (9.6). There is a dipole interaction between p; and
qi only if j = k, so summing the interactions of the three pairs and using
(9.28) we obtain the total interaction energy

20% - ~ 1
Ept = = (8- M8)—. ,
=3 (8 fa)X (9.29)

To get a better understanding of this. we can reexpress the matrix Af
in terms of a rotation through an angle ¥» about an axis i,

M;; = cosv di; + (1 — cosv)nnj + sin ¢ €55 . (9.30)
The interaction energy (9.29) then takes the form

202 L 1-3(X-n)?
Emt - 3 (1 Cos g )“_73—_ . (931)
Clearly, by a suitable choice of the axis N, the two Skyrmions can be
made to either repel or attract, corresponding to a positive or negative
interaction energy respectively. The attraction is maximal (that is. the
interaction energy is minimal) if X -fi = 0 and v = 7, in other words,
one Skyrmion is rotated relative to the other through an angle of 180°
about a line perpendicular to the line joining them. This is known as the
attractive channel. Note that in making this statement we are using the
fact that an isospin rotation of a single Skyrmion is equivalent to a spatial
rotation, so we may think in terms of the latter.

In Section 9.8, where we discuss Skyrmion dvnamics, we return to for-
mula (9.31) in relation to setting up initial conditions for several well
separated Skyrmions such that they mutually attract.
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The dipole calculation described above can not serve as a rigorous
derivation of the asymptotic interaction energy of two Skyrmions since
it assumes that a Skyrmion whose field is asymptotically of the dipole
triplet form also reacts to an external field like a dipole triplet. Below we
present a more formal calculation of the interaction energy, closely fol-
lowing the presentation in [365], which confirms the result obtained from
the dipole picture.

In Eq. (9.8) we have expressed the static energy in terms of the right
currents R; = Q;UUT, but we could also have chosen to write it in terms
of the left currents L; = UtQ,U, giving an identical expression after the
replacement of Ry by Lx. These two equivalent formulations are useful in
what follows, as are the quantities R; and L; defined as

- 1 ~ 1
Ri=Ri— 7[R;. [Rj, Ril], Li=Li—{[L;.[L;, Li]]. (9.32)

It follows from the Skyrme field equation (9.3) that for a static solution.
both these currents are divergenceless, that is,

R =L =0. (9.33)

To calculate the interaction energy of two well separated Skyrmions we
use the product ansatz of two hedgehog fields

U=yuby? ) U = Un(x), U = OUy(x — X)Ot . (9.34)

In computing the energy of the product field (9.34) it is helpful to note
the following relation

Li = UtaU = UN (LY 4 gy (9.35)

where LE” denotes the left current constructed from the field UV and
so on. Substituting this expression into the Skyrme energy gives a term
involving only Lf-”, one involving only ng) and a cross term. The first
two terms each contribute precisely the energy of a single Skyrmion and
the cross term gives the interaction energy which, neglecting terms that

are quadratic in both Lgl) and REQ), has the leading order contribution
1 (D) 2(2) , 5(1) 2 1) (2
Eine ~ ~13.2 /IR3 Tr(L; Rﬁ + LS )Ri ) Lf )RE ))da.r. (9.36)

In order to evaluate this integral for large X, we divide R? into three
regions, I, 11 and I11, given by I = {x: |x| < p}, Il = {x: |x - X| < p}
and 11 = R* — I - II, with 2p < X. For large X we choose p large
enough so that outside region I we can apply the asymptotic expression

. X-T
LY~V = zca,»(T;l—a—) : (9.37)
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sud similarly outside region 17

(9.38)

- . t
R~ = ico, (O(x X) To)

Ix — X3

Note that since i»,m differs from Lgl) only by a triple product of Ll(-l)’s
(and similarly for R,m) then in the above limits we also have that

BV ~ 1Y and R~ @, (9.39)

Furthermore, we also require that p is small enough that lfl) may be
taken to be constant over region I and sz constant over region /. This
is achieved by letting p — o0 as X — oc in such a way that p/X — 0.
Substituting these approximations into (9.36) we arrive at

1 2 F(1) (1), ;3
al ~  — Trd 7 G
Eim ST {7 AR
1 ~(2 2),
+ )x_x /”(R,‘. ') B - zﬁ”r,@’d%}. (9.40)

Expanding I:il) in terms of Pauli matrices as
P _ L5
Ly =iLity. (9.41)

we see from Eq. (9.33) that for each m = 1,2, 3. I:,-m are the components
of a divergenceless vector field, which implies that there exists a potential
Ziam such that

L, = 5,-J-k(‘)jka . (9.42)

Explicitly, it can be checked that this potential is given by

| ' 12
. sin® fy _ | rf sin .
ka = (51"2 f - 1_2 ) TgTn + '2_ (1 + 2r—2f) EkmnTn . (943)
Thus
F(l) 3 _ . B 5
L7 d'r = ir, EijkLikmi;dS
1 i

- irmf(éin,-fifm)i 14250 1) 4
al 2

72

8miC
3

~ —

Tis (9.44)
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where the ﬁndl line is obtained by making use of the asymptotic expressicn
f(p) ~ C/p* and keeping only leading order terms in p. Next, we have
that

/ll(l)d.?r — IC/ (| |3)d.r_ lCTm/OOm
I

| 4miC
= —7 /Vzlxld‘*' —3 iy (9.45)

where the final expression is obtained by using the identity \72% =
—4m(x). Combining these two results we have that

/I(llﬁ” — 1YY Pr ~ —driCr, . (9.46)
From (9.38) we see that
51n - )&,.Yn
r? ,Cor,,of( - ) {9.47)
x=0 X

so the first term in (9.40) has been calculated to be

1 @) £ (1) (1) 3
_mﬁ{n x:o/I(L" — gy
(vz
~ T sTr(C)T,,(’) ™ — 3X;X,01,0'r)
2C%(TrM — 3X - AX)

= - 37 X0 ‘ (948)

where Al is the SO(3) matrix corresponding to O as given in (9.6).
A similar calculation for the second term in (9.40) yields the same result

1 0 “2) (2 } 2C*(TrM - 3X - AIX)
Trq! R= - ey ~— :
1272 { x=X ll( ! Jdr 3n X3 ‘
(9.49)
The final term in (9.40) is relatively simple to caleulate using an integra-
tion by parts and the relation V? 1 = —4mwd(x).
(1) (2) .3
- L 2 d, ~ —5A
127r2Tr{/" R .r} =) [AJ/R‘()() (')()AI Id
2C?(TrM - 3X - MX)
= P . (9.50)
IrX-
Adding together the three terms in (9.40) we arrive at the final answer
2C%(TrM - 3X - MX) 202 - -]
Ein ~ —~ ( ) _ (0-MO) (9.51)

3r.X3 T X’
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which agrees with the earlier result obtained from the asymptotic dipole
calculation.

The general form of the interaction energy of two charge 1 Skyrmions
was originally presented by Skyrme [379] and verified by Jackson et al.
(218] and Vinh Mau et al. [408]. Castillejo and Kugler [76] noted that
if the asymptotic interaction energy of two well separated clusters of
Skyrmions, of any charge, is positive, then it can be made negative by
performing an appropriate isospin transformation on one of the clusters.
We have already explicitly seen that this is true in the case of two charge
1 Skyrmions, as illustrated by Eq. (9.31). It may appear that this re-
sult constitutes a proof of the strict inequality (9.24), and hence that
Skyrmions exist for any baryon number, since it is always possible to
arrange that two clusters have a negative interaction energy, and hence
a total energy which is lower than the sum of their individual energies.
However, the flaw in Castillejo and Kugler’s argument is that, to lowest
order, the asymptotic interaction energy may vanish. In this case, the
lowest order contribution to the asymptotic interaction energy can not be
made negative by an isospin rotation and the calculation must be per-
formed to higher order. A similar caveat obviously applies at each order
and so it is not possible to conclude that the interaction energy is nega-
tive. only that it is non-positive. This is another manifestation of the fact
that the weaker energy inequality (9.25) has been proved. but the strict
inequality (9.24), required for the proof of existence of arbitrary charge
Skyrmions, remains unproven at present.

However, further progress on this problem has recently been made.
Now that it has been established that any Skyrmion has a leading mul-
tipole [294], it can be shown that in most cases a pair of well separated
Skyrmions of any baryon number can be oriented and positioned so as to
attract. Unfortunately, the argument breaks down because of the non-
linear terms if the leading multipole of one of the Skyrmions is of high
order. or more precisely, if the orders of the multipoles differ by more than
two. Nevertheless, as Schroers has shown {367}, some rigorous conclusions
about the existence of Skyvrmions of higher baryon number are possible.

9.4 Low charge Skyrmions

In this section we discuss the properties of minimal energy Skyrmions
with charges 1 < B < 8, constructed using numerical methods. Details of
the numerical codes used to compute these solutions can be found in the
papers cited below, and a detailed discussion appears in [45], to which we
refer the interested reader.

All known solutions appear to be isolated and their only moduli are the
obvious ones associated with the nine-dimensional symmetry group of the
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Skyrme model. Generic solutions therefore have nine moduli, although
solutions with axial or spherical symmetry have, respectively, one or three
fewer.

As we have already noted, for charges B > 1 the minimal energy
Skyrmion is not spherically symmetric. For B = 2, it turns out that it
has an axial symmetry [244, 283, 406]. The energy density has a similar
toroidal structure to that of the charge 2 axisymmetric monopole solution
discussed in the previous chapter, despite the fact that the fields of the
two models are very different. In displaying Skyrmions it is conventional
to plot surfaces of constant baryon density B (baryon density isosurfaces),
where B is the integrand in Eq. (9.9), although energy density isosurfaces
are qualitatively very similar. In Fig. 9.2 we display baryon density iso-
surfaces for the minimal energy Skyrmions of charges 1 < B <8.

1:003
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Fig. 9.2. Baryon density isosurfaces for 1 £ B < 8. The barvon number and
symmetry of each solution is shown.

There are axially symmetric solutions of the Skyrme equation for B > 2
[244], but these are not the minimal energy solutions, and in fact for
B > 4 they are not even sufficiently bound to prevent break-up into B
single Skyvrmions. so they correspond to saddle points.

The Skyrmions presented in Fig. 9.2 have only discrete symmetries for
B > 2. The B = 3 and B = 4 Skyrmions have tetrahedral symmetry
T4 and cubic symmetry Oy, respectively [65], and again are very simi-
lar to particular monopoles of the same charge, which we have already
discussed. The associated polyhedra, where the baryon density is concen-
trated, are a tetrahedron and cube, as the figure shows. It is perhaps of
interest to point out that these Skyrmion solutions were computed before
the existence of the corresponding monopoles was known. At the time
it was therefore very surprising to find these highly symmetric Platonic
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Skvrmions emerging from asymmetric initial conditions. Their existence
was a major motivation for the search for Platonic monopole solutions,
and although a deep connection between Skyrmions and monopoles is
still lacking, a link between these two kinds of soliton has been found, via
rational maps, and has led to an improved understanding of the structure
of Skyrmions, as we discuss in detail in the next section.

The B = 5 Skyrmion has a relatively small symmetry, namely Dy;. The
associated polyhedron comprises four squares and four pentagons, the top
and bottom of the structure being related by a relative rotation of 90°.
In case the reader is not familiar with extended dihedral symmetries we
briefly recount them here. The dihedral group D, is obtained from C,,, the
cvclic group of order n, by the addition of a Cy axis which is orthogonal
to the main Cy, symmetry axis. The group D, can be extended by the
addition of a reflection symmetry in two ways: by including a reflection in
the plane perpendicular to the main C, axis. which produces the group
D, or, alternatively, a reflection in a plane which contains the main
svmmetry axis and bisects a pair of the Cy axes obtained by applying
the Cp, symmetry to the generating Cy axis. which produces the group
Dn(l-

Recall that a charge 5 monopole exists with octahedral symmetry, so
given the similarity between monopoles and Skyrmions it may seem a
little curious that the B = 5 Skyrmion has relatively little symmetry. In
fact. as we discuss further in the next section. there is an octahedrally
symmetric charge 5 solution, but it is a saddle point whose energy is a
little higher than the less symmetric D,y minimum.

The B = 6 and B = 8 Skyrmions also have extended dihedral sym-
metries. this time Dyy and Dgy respectively. The B = 7 Skyrmion is
icosahedrally symmetric [41], its symmetry group Y}, being an extension
of Ds4. The baryon density of the B = 7 Skyrmion is localized around
the edges of a dodecahedron, the structure closely resembling the icosa-
hedrally symmetric charge 7 monopole.

The polyhedron associated with the B = 6 Skyrmion consists of two
halves, each formed from a square with pentagons hanging down from all
four sides. To join these two halves, the two squares must be parallel, with
one rotated by 45° relative to the other. The B = 8 Skyrmion has a similar
structure, except that the squares are replaced by hexagons, and each
half has six pentagons hanging down. The top hexagon is parallel to the
bottom hexagon but rotated by 30°. The halves of the B = 7 Skyrmion
have pentagons hanging from a pentagon, hence the larger symmetry.

In Fig. 9.3 we display models (not to scale) of the polyhedra associated
with the Skyrmions of charge 5,6,7,8, and in Table 9.1 we present, for
charges 1 to 8, the symmetries and energies per baryon, E/B, of the
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Fig. 9.3. Polyhedral models (not to scale) representing the Skyrmions with
B=5.6.728.

Skvrmions, computed from the numerical solutions of the field equation
{45].

In ref. [41] a phenomenological rule for the structure of the minimal en-
ergy Skyrmions was proposed, called the Geometric Energy Minimization
(GEM) rule. This states that, for B > 2, the polyhedron associated with
the charge B Skyrmion is composed of almost regular polygons meeting at
4(B - 2) trivalent vertices, and the baryon density is concentrated along
the edges of the polygons. Note that there are several equivalent ways in
which the GEM rule can be stated, since, by using the trivalent property
together with Euler’s formula, any one of the three parameters of the
structure, the number of vertices V, faces F, or edges E, determines the
other two. Explicitly, V = 4(B -2). F=2(B-1), E=6(B -2). Since
the baryon density isosurface has a hole in the centre of each face, the
GEMI rule is consistent with the observation of ref. {65] that the isosur-
face contains 2(B — 1) holes. For 3 < B < 8 we have already described
the Skyrmions, and it is a simple task to confirm that the GEM rule is
obeyed in these cases. However, as B increases, the number of possible
structures satisfying the GEM rule grows rapidly, so that by no means
does it uniquely predict the structure.

For B > 7 it is possible to satisfy the GEM rule with a trivalent poly-
hedron formed from 12 pentagons and 2B — 14 hexagons. We will refer to
such structures as fullerene-like and to the conjecture that the Skyrmion’s
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Table 9.1.  The symmetry, K, and energy per baryon, E/B, for the numerically
computed minimal energy Skyrmions of charge 1 < B < 8.

B K EJB
1 0(3) 1.2322
2 Dyp 1.1791
3 Ty 1.1462
4 On 11201
5 Dy 11172
6 Dy 1.1079
7 Y, 10947

8 Dgg 1.0960

baryon density isosurface has this form as the fullerene hypothesis since
precisely the same fullerene (a shortening of Buckminsterfullerene) struc-
tures arise in carbon chemistry, where carbon atoms sit at the vertices of
such polyhedra [137]. It is then plausible [41] that the minimal energy
Skyrmion of charge B has the same symmetry as a fullerene from the
family Cyp_2)- For low charges (B = 7, B = 8) this leads to a unique
prediction for the structures. which are those we have already encoun-
tered, but as the charge increases the number of possible structures again
increases. In particular, for B = 9 there are two possibilities with Dy and
T,; symmetries respectively, for B = 10 there are six, for B = 11 there are
15, with a rapid increase for B > 11. However, there is a unique icosahe-
drally symmetric configuration with B = 17 corresponding to the famous
fullerene structure of Cg, and given its high symmetry it is not surpris-
ing that the minimal energy B = 17 configuration has this structure. In
Section 9.6 we discuss Skyrmions of higher charge. up to B = 22, and
find that the fullerene hypothesis is valid for all but two charges. where
interesting caveats apply. In the next section we discuss an approximate
analytic description of Skyrmions and see that within this approach at
least one aspect of the GEM rule, namely, that the number of faces is
2(B - 1), can be understood.

9.5 The rational map ansatz

The observed similarities between Skyrmions and monopoles leads nat-
urally to the question whether there is an approximate construction of
Skvrmions from monopoles. Of course, it is not expected that an exact
correspondence exists, since the Yang-Mills-Higgs and Skyrme models
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have a number of very different properties, but for certain monopole so-
lutions a mapping does exist which generates a good approximation to a
related exact Skyrmion solution. As yet, there is no known direct trans-
formation between the fields of a monopole and those of a Skyrmion, Lut
as we describe in this section, there is an indirect transformation via ra-
tional maps between Riemann spheres. Recall from Chapter 8 that there
is a precise correspondence between charge N monopoles and degree N
rational maps (we have in mind here the Jarvis maps); thus a Skyrme
field constructed from a rational map is indirectly constructed from a
monopole.

One needs an ansatz for a Skyrme field in terms of a rational map, and
the shell-like fullerene structures of the numerically computed Skyrmions
suggest how to proceed. Rational maps are maps from S? — $2 whereas
Skyrmions are maps from R? — 53, The main idea behind the rational
map ansatz, introduced in [193], is to identify the domain S? of the ra-
tional map with concentric spheres in R3, and the target S? with spheres
of latitude on S3. It is convenient to use 3-vector notation to present the
ansatz explicitly. Recall that via stereographic projection. the complex
coordinate z on a sphere can be identified with conventional polar coor-
dinates by z = tan(f/2)e'?. Equivalently, the point z corresponds to the

unit vector 1

1+ |z?

Similarly the value of the rational map R(z) is associated with the unit
vector

fi, = (z+ 2 i(z=2), 1=z, (9.52)

i (R+R.i(R-R).1~-|R}?). (9.53)

1+ |R)?
Let us denote a point in R? by its coordinates (r, z), where r is the radial
distance from the origin and z specifies the direction from the origin. The
ansatz for the Skyrme field, depending on a rational map R(2) and a
radial profile function f(r), is

U(r,z) = exp(if(r) fp) - 7), (9.54)

where, as usual, 7 = (71, 72, 73) denotes the triplet of Pauli matrices. For
this to be well defined at the origin, f(0) = k7 for some integer k. We
take k = 1 in what follows. The boundary condition U = 19 at r = o is
satisfied by setting f(oc) = 0. It is straightforward to verify (see below)
that the baryon number of this field configuration is B = N, where N is
the degree of R.

Mathematically, this construction of a map from compactified R? to
§3, out of a map from S? to S2, is a suspension; the suspension points on
the domain are the origin and the point at infinity, and on the target the
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points U = —13 and U = 1,. Suspension is an isomorphism between the
homotopy groups m2(S?) and #3(S%), which explains why B = N.

An SU(2) Mébius transformation on the domain S2 of the rational map
corresponds to a spatial rotation, whereas an SU (2) Mobius transforma-
tion on the target S corresponds to a rotation of ng, and hence to an
isospin rotation of the Skyrme field. Thus if a rational map R : §? — §2
is symmetric in the sense defined in Chapter 6 (i.e. a rotation of the do-
main can be compensated by a rotation of the target), then the resulting
Skyrme field is symmetric in the sense defined in Section 9.2 (i.e. a spatial
rotation can be compensated by an isospin rotation).

Note that if we introduce the Hermitian projector

1 1 R
P=——«+ \ .55
e (n e) (9:55)
satisfying P2 = P = P!, then the ansatz (9.54) can be written as
U =exp(if (2P - 15)). (9.56)

which is similar to the expression (8.262), describing the asymptotic form
of the solution of the Jarvis equation corresponding to the monopole with
rational map R.

The simplest degree 1 rational map is R = 2, which is spherically
svmmetric. The ansatz (9.54) then reduces to Skyrme's hedgehog field
(9.18) with f(r) being the usual profile function. In this case the ansatz
is compatible with the static Skyrme equation but in general it is not.
s0 it can not produce exact solutions. only low energy approximations to
these.

An attractive feature of the ansatz is that it leads to a simple energy
expression which can be minimized with respect to the rational map R
and the profile function f to obtain close approximations to the numer-
ical. exact Skyrmion solutions. To calculate the energy we exploit the
geometrical formulation of the Skyrme model presented in Section 9.1.
For the ansatz (9.54), the strain in the radial direction is orthogonal to
the strain in the angular directions. Moreover. because R(z) is conformal.
the angular strains are isotropic. If we identify A? with the radial strain
and /\3 and Aﬁ with the angular strains. we can easily compute that
dR
dz I '

i 1 z|?
AL = —f'(r), z\2=)\3=ﬂ aalc

r 1+ |RP (9.57)

From Eq. (9.12), the baryvon number is

D _ f (sinf I+ z)? dR
- r 1+ |R?|dz

2 2idadz
< ) id 2dr, (9.58)

—._......_‘._r
(1+]zf2)?
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where 2idzdz/(1 + |z|*)? is equivalent to the usual area element or a
2-sphere sin @ dfdp. Now the part of the integrand
( 1+ |z} |dR )2 2idzdz
1+ |R]2[dz]) (14]z}?)2
is precisely the pull-back of the area form 2idRdR/(1 + |RJ?)? on the
target sphere of the rational map R; therefore its integral is 47 times the
degree N of R. So (9.58) simplifies to
2N
B= —-———/ f'sin® fdr=N, {9.60)
where we have used the boundary conditions f(0) = 7, f(oc) = 0. This
verifies again that the baryon number of the Skyrme field generated from
the ansatz is equal to the degree of the rational map.
Substituting the strains (9.57) into the expression (9.12) for the energy
density yields the energy

o z|? 2
= ﬁ%/{f’z PP Jf(f'"“’ )(111:1?.'12 ‘JZ) (9.61)
sm4f 1+ |22 [dR\* 2idzdz 2
= (1+|R[2 ?IT) }m’" ar
which can be simplified. using the above remarks about baryon number.
to

dR

1 fad ’ 5
5:3_7(/ ( 2072 4 9B sin® f(f2 4 1)+ T o0 f)dr. (9.62)

7T denotes the purely angular integral
dR

7.1 /( 14 |z)?
T dn 1+ |R]? dz
which only depends on the rational map R.

Note the following pair of inequalities associated with the expression
(9.62) for the energy E. The elementary inequality
dR\? 2
—1) dS5]) .
dz ) )

(Jras) ([ (el &) os) = (] (e
(9.61)

where dS = 2idzd3/(1 + |z|?)%, implies that T > B2, Next, by using a
Bogomolny-type argument. we see that

1 > win? £\°
p-l [) {(,.f/+\/f”"; f) + 2B f(f 412 (9.65)

- 202+ \/f)f'sinzf} dr

4 2idzdz .
m ) (9.63)




9.5 The rational map ansatz 369

I > 3—1—QB+\/_ / (- 2f'sin2f)dr=%(28+\/I_)[—f+%sin2f]:0
(9.66)

and so 1
E> (2B + VI). (9.67)

Combined with the earlier inequality for 7, we recover the usual Fadeev-
Bogomolny bound E > B. The bound (9.67) is stronger than this for
fields given by the rational map ansatz, but there is no reason to think
that true solutions of the Skyrme equation are constrained by this bound.

To minimize E one should first minimize 7 over all maps of degree B.
The profile function f minimizing the energy (9.62) may then be found
by a simple gradient flow algorithm with B and 7 as fixed parameters. In
Section 9.6 we discuss the results of a numerical search for Z-minimizing
maps among all rational maps of degree B, but in this section we first
consider the simpler problem in which we restrict the map to a given
svinmetric form, with symmetries corresponding to one of the numeri-
cally known Skyrmion solutions. If these maps still contain a few free
parameters, T can be minimized with respect to these. This procedure is
appropriate for all baryon numbers up to B = 8, for which we know the
svinmetries of the numerically computed Skyrmions, and there is sufficient
svinmetry to highly constrain the rational map.

For B = 2, 3,4, 7 the symmetries of the numerically computed Skyrmions
are Dy Ty, On, Y} respectively. From the general discussion and specific
examples of Chapters 6 and 8. we see that in each of these cases there is
a unique rational map with the given symmetry. We recall that they are

R 2 R:z‘"’—ﬁi:‘ =z4+2\/§izg+l R R S ST
’ V3iz2 — 1 o -2V3Biz2 4+ 1] 2T T -T2 40
(9.68)

Using these maps, and computing the optimal profile functions f(r), one
obtains Skyrme fields whose baryon density isosurfaces are indistinguish-
able from those presented in Fig. 9.2. In Table 9.2 we list the energies
per baryon of the approximate solutions obtained using the rational map
ansatz, together with the values of 7 and I/B2, in order to compare with
the bound Z/B? > 1.

Recall that the Wronskian of a rational map R(z) = p(z)/q(z) of degree
I3 is the polynomial

W(z) =p'(2)q(2) — ¢'(2)p(2) (9.69)

of degree 2B — 2, and observe that the zeros of the Wronskian give inter-
esting information about the shape of the Skyrme field constructed using
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Table 9.2. Approximate Skyrmions obtained using the rational map ansatz.
For 1 < B < 8 we list the symmetry of the rational map, K, the value of
7, its comparison with the bound Z/B? > 1, and the energy per baryon E/B
obtained after computing the profile function which minimizes the Skyrme energy
function.

B K I 1I/B® E/B
1 O@B) 1.0 1000 1.232
2 D, 5.8 1452 1.208
3 Ty 136 1.509 1.184
4 O0np 207 1291 1.137
5 Dy 358 1430 1.147
6 Dy 508 1410 1.137
7 Y, 609 1242 1.107
8 Dg 856 1.338 1.118

the ansatz (9.54). Where W is zero, the derivative dR/dz is zero, so
the strain eigenvalues in the angular directions, Ay and A3, vanish. The
baryon density, being proportional to A\{A2)3, therefore vanishes along the
entire radial line in the direction specified by any zero of . The energy
density will also be low along such a radial line, since there will only be
the contribution A} from the radial strain eigenvalue. The ansatz thus
makes manifest why the Skyrme field baryon density contours look like
polyhedra with holes in the directions given by the zeros of 1V, and why
there are 2B — 2 such holes, precisely the structure seen in all the plots in
Fig. 9.2. This explains the GEM rule F = 2(B - 1), and although there
is no firm rational map explanation of the other aspects of the GEM rule.
we will make some further comments on them in the following section.

As an example. consider the icosahedrally symmetric degree 7 map in
(9.68). The Wronskian is

W(z) = 282(2"" + 1125 - 1), (9.70)

which is proportional to the Klein polynomial V.. and it vanishes at the
twelve face centres of a dodecahedron [237). This explains why the baryon
density isosurface of the B = 7 Skyrmion displayed in Fig. 9.2 is localized
around the edges of a dodecahedron.

For the remaining charges, B = 5,6,8, the Skyrmions have extended
dihedral symmetries, so we need to consider degree B rational maps with
dihedral symmetries D,,, and their extensions by reflections to D,4 and
Dy, Constructing Dy,-symmetric maps does not require the general group
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theory formalism discussed in Chapter 6 since it is simple to explicitly
apply the two generators of Dy, to a map. In terms of the Riemann sphere
coordinate z the generators of the dihedral group D, may be taken to be
=+ e2T/" 3z and z . 1/z. The reflection required to extend the symmetry
to D, is represented by z — 1/Z, whereas z +— e™/™z results in the
svmmetry group Dpq.

Explicitly, an s-parameter family of D,-symmetric maps is given by*

2;20 ajz]n+u
—_— ——-&——-———— .
ijo a5 ;29"

where u = B mod n and s = (B —u)/n. Here a; = 1 and ay,...,a,_1 are
arbitrary complex parameters. Clearly, these maps satisfy the conditions
for symmetry under D,

R(e¥™/"2) = *™/"R(z), R(1/z) =1/R(z). (9.72)

R(2) (9.71)

and imposing a reflection symmetry constrains each complex coefficient
a; to be either real, or pure imaginary. In the case of D, symmetry, all
coefficients a; are real, whereas for D,,4 symmetry a; is real or imaginary
depending on whether (s — j) mod 2 is, respectively, 0 or 1.

Consider now the B = 5 maps with Dy; symmetry. Setting B = 5 and
n = 2 in the above gives u = 1 and s = 2, so there is a family of degree 5
maps with two real parameters,

z(a+1ibz? + 21

R(z) = 1+ ibz2 + a2t

(9.73)

with @ and b real. Additional symmetry occurs if b = 0: R(z) then has
Dy, symmetry, the symmetry of a square. There is octahedral symmetry

if. in addition, @ = —5. This value ensures the 120° rotational symmetry
iz +1 iR(z)+1

R = . 9.74

(—iz-l—l) —iR(z) + 1 (9-74)

The octahedral map R(z) = z(z* — 5)/(~52* + 1) has Wronskian
Wi(z) = -5(z% + 1421 + 1), (9.75)

which is proportional to Oy, the face polynomial of an octahedron. Using
(9.73) in the rational map ansatz for the Skyrme field gives a structure
which is a polyhedron with eight faces. In the special case a = -5, b =0,
this polyhedron is an octahedron, and the angular integral is 7 = 52.1;
however, a numerical search over the parameters a and b shows that 7

* There are other Dy-symmetric families of maps, but we will not need these.



372 Skyrmions

is minimized when a = —3.07, b = 3.94, taking the value T = 35.8.
The approximate Skyrmion generated from the map with these parameter
values has a baryon density isosurface which is virtually identical to tliat
of the numerically computed solution displayed in Fig. 9.2. From this
analysis we therefore understand that there is an octahedrally symmetric
B = 5 solution, but that it is a saddle point with an energy higher than
that of the less symmetric Dyy Skyrmion. There is a further, higher
saddle point at a = b = 0, where the map (9.73) simplifies to R(z) =
2°, and gives a toroidal Skyrme field. Although many minimal energy
Skyrmions are highly symmetric, symmetry is not the most important
factor in determining the structure of the minimal energy solution, and
less symmetric configurations sometimes have lowest energy.

Another example of a symmetric saddle point is the B = 7 configuration
with cubic symmetry. The relevant rational map is given by R(z) =
(72 + 1)/(2" + 72%) and has Wronskian W(z) = -212%(z* ~ 1)2. Each
root of this Wronskian is a double root (including the one at infinity) and
they lie at the face centres of a cube. A baryon density isosurface for this
saddle point configuration is therefore qualitatively similar to that of the
minimal energy B = 4 Skyrmion. This cubic B = 7 saddle point will play
a role in a scattering process discussed in Chapter 10.

The analysis of the relevant dihedrally symmetric B = 6 and B = &
maps is similar to the B = 5 case, the only difference being that just one
real parameter appears. so the energy minimization is easier. These maps
can be found in ref. {193].

Given the rational map describing a Skyrmion it is possible to infer
information regarding its asymptotic fields. For a Skyrmion which is
svmmetric under a group K, its pion fields will be invariant under combi-
nations of rotations by elements of K and isospin rotations given by some
(not necessarily irreducible) real three-dimensional representation of A
which we denote by p. Now the dipole fields of a single Skyrmion, being
spherically symmetric, are also K-symmetric by restriction, and the cor-
responding representation p is the defining representation of K, regarded
as a subgroup of SO(3), which we denote by p, so p(k) = k. By comparing
p and p it is possible to determine whether a given Skyrmion looks from
far away like a single Skyrmion or antiSkyrmion, that is, like a triplet of
orthogonal dipoles. This information is important in understanding the
interaction between Skyrmion solutions and will be used in Section 9.8
when we discuss Skyrmion dynamics and scattering.

As an example, (‘onsxder the tetrahedrally symmetric B = 3 Skyrmion
described by the map R(z) = (2% - V3iz) \/312 - 1). A straightforward
calculation reveals that p =p=F, thdt 15, the pion fields transform via
the same three-dimensional irreducible representation of the tetrahedral
group as the hedgehog fields of a single Skyrmion or antiSkyrmion. In
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crder to distinguish between these last two possibilities we can compute
the value of the rational map along the three Cartesian directions, finding
I{0) = 0, R(1) = -1, R(i) = i, which demonstrates that the asymptotic
dipole fields are those of an antiSkyrmion, since the pion fields are ob-
tained from those of a Skyrmion by the reflection mp — —ms.

The fact that the B = 3 Skyrmion is asymptotically like an anti-
Skyrmion can be understood more naively by a simple addition of the
dipole moments of its constitutent single Skyrmions. First consider two
single Skyrmions brought together along the rl-axis. They are in the
attractive channel if the first is in standard orientation and the second
is rotated by 180° around the r3-axis. This gives triplets of dipole mo-
ments p = 47C(e;.ez,e3) and q = 4nC(—ey, —ez,e3). Their sum is
47C'(0.0.2e3), implying that the toroidal B = 2 Skyrmion has only a
single dipole, with roughl\ twice the usual strength. Now brlng in a third
Skyrmion, along the z3-axis, and rotated by 180° around the z! -axis, giv-
ing the dipole moments r = 47C(e;, —e3, —e3). The total of the dlp()]e&,
is p+q+r=4nC(e;, —ea,e3). precisely those of an antiSkyrmion.

A similar analysis suggests that the B = 4 cubic Skyrmion will have
no dipoles, since it can be constructed from two B = 2 tori. These have
a single dipole each. which by an appropriate relative isospin rotation
can be made to cancel. The symmetry of the degree 4 cubic map (9.68)
Is consistent with this result, since the representation p is the sum of a
one- and two-dimensional irreducible representation of O, whereas pis
a three-dimensional irreducible representation. The fact that the B = 4
Skyrmion has no dipole fields explains why it is so tightly bound, and
why it interacts only weakly with other Skyrmions.

For the dodecahedral B = 7 Skyrmion the naive dipole picture appears
to fail. since the combination of the B = 4 cubic Skyrmion, with no
dipole fields, and the B = 3 tetrahedral Skyrmion, with antiSkyrmion
dipole fields, suggests that the B = 7 Skyrmion has the dipole fields of
an antiSkyrmion. However, the representation analysis of the degree 7
dodecahedral map (9.68) reveals that although both p and j are three-
dimensional irreducible representations of Y, they are not the same (one is
Fy and the other is F2). Hence the asymptotic fields can not be those of a
single antiSkyrmion (or Skyrmion). In fact. there are no dipole moments
at all. The reason why the simple dipole picture fails in this case is not
vet understood.

9.6 Higher charge Skyrmions

In the preceding section, for each charge B < 8. the map R was selected
so that the symmetry of the resulting Skyrme field matched that of the
numerically computed Skyrmion. Recently, an alternative approach to
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Table 9.3. Results from the simulated annealing of rational maps of degree B.
For 9 < B < 22 we list the symmetry of the rational map, K, the minimal
value of Z, the value of Z/B? (which is bounded below by 1), and the energy per
barvon E/B obtained after computing the profile function which minimizes the
Skyrme energy functional.

B K I I/B® E/B
9 Dy 1093 1.349 1.116
10 Dy 1326 1.326 1.110
11 Dy 1611 1.331 1.109
12 T, 1866 1.206 1.102
13 0 2167 1282 1.008
14 D, 2585 1.319 1.103
15 T 2963 1.317 1.103
16 Dy 3329 1.300 1.098
17 Y, 3634 1.257 1.092
18 Dy 4187 1.292 1.095
19 Dy 4679 1.296 1.095
20 Dgg 5197 1209 1.005
21 T 5699 1.292 1.094
22 Dy 6216 1.281 1.092

constructing the appropriate rational map R, based on energy minimiza-
tion rather than symmetry. has been applied for all charges B < 22 [451.
In this approach, no assumption is made as to the possible symmetry
of the minimal energy Skyrmion. which has the advantage that full nu-
merical simulations of the Skyrme equation need not first be performed
(although it is obviously useful to have these results for comparison. as
we discuss later). The main task is to search for the rational map of de-
gree B that minimizes I, which may be viewed as an interesting energy
function on the space of rational maps. This is still quite difficult numer-
ically but has been performed using a simulated annealing algorithm. a
Monte-Carlo based minimization method which has a major advantage
over other conventional minimization techniques in that changes which
increase the energy are allowed. enabling the algorithm to escape from
local minima that are not the global minimum.

For B < 8 the simulated annealing algorithm reproduces the ratio-
nal maps discussed previously (whose properties are listed in Table 9.2).
providing a nice numerical check on both the minimizing rational map
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strategy and also the full field simulations - since these produce very
similar configurations.

The results of the simulated annealing algorithm applied to a general
rational map of degree 9 < B < 22 are presented in Table 9.3. In each
case, we tabulate the identified symmetry group K, the minimum value of
7. the quantity Z/B? (which is strikingly uniform at around 1.25-1.35),
and the value of E /B for the profile function which minimizes the energy
functional (9.62) for the particular map.

By minimizing within certain symmetric families of maps, where the
svmmetries are not shared by the minimal energy map, it is possible to
find other critical points of Z. In Table 9.4 we present the results of an
extensive search for such minimal energy maps with particular symme-
tries. usually dihedral groups or those groups suggested by the extensive
tables of fullerenes presented in ref. [137]. which lends further weight to
the conclusion that the maps presented in Table 9.3 are in fact the global
minima for the energy functional Z. These results do. however, turn up
the possibility that in certain cases the Z-minimizing map may not nec-
essarily be the one which represents the true Skyrmion. since some of the
T values in Tables 9.4 and 9.3 are very close. For the moment we will
denote the maps in Table 9.4 by *. and conclude at least that they are
not global minima of Z. but represent other critical points.

For most charges there is a sufficient gap between the minimal value of
T and that of any other critical point to be confident that the minimal
map corresponds to the Skyrmion. However, for charges B = 10.16.22 a
glance at Tables 9.3 and 9.4 reveals that there are different maps (with
different symmetries) whose associated Skyrme fields have energies which
differ by less than 0.1%. Given that the rational map ansatz is an ap-
proximation which tends to overestimate the energy by around 1%, it is
not clear which of these maps will best describe the angular form of the
minimal energy Skyrmion. This question has been addressed using full
field simulations [45] in which various initial conditions, consisting of a
number of well separated Skyrmion clusters, are relaxed. Although it is
difficult to make definitive statements, the results suggest that for these
three charges the maps presented in Table 9.4, rather than in Table 9.3.
represent the minimal energy Skyrmions. The case B = 14 is anomalous,
in that the rational map describing the Skyrmion. which again is not the
I-minimizing map, is not currently known. The solution obtained from
full ficld simulations (believed to be the minimal energy configuration) is
rather elongated. so the rational map approximation to this configuration
probably has a substantially higher energy, since it assumes a spherical
shape. This explains why it is likely that the rational map which describes
the more spherical version of this Skyrmion is not the Z-minimizing map.
There is a technical reason why we are unable to compute this map,
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Table 9.4, Same as for Table 9.3. but for other critical points of Z. Notic
that the Z values for the B = 10 configurations with Dy and Dy symmetry, for
B = 13 with Dy;. B = 16 with Dy, and B = 22 with Dy are extremely close 1y
the corresponding values in Table 9.3, suggesting the possibility of local minina
or low-lving saddle points.

B K I I/B® EJB
9% T, 1128 1.393 1.123
10+ Dy 1328 1.328 1110
10 Dy 1335 1335 1.111
10* Dy, 1432 1432 1.126
13* Dy 2168 1.283  1.008
13* 0, 2651 1.568 1.140
15 T, 313.7 1391 1.113
16 Dy 3334 1302 1.008
17 O, 367.2 1271 1.003
19* T, 4698  1.301  1.096
2% Dy 6234 1288 1.002

which is that the associated Skvrmion has very little svnunetry. in fact
only (. and this is already contained within the svmmetry group of the
Z-minimizing map. which is D..

Taking into account the above comments, we present. in Table 9.5.
the svinmetry K. and energy per barvon E/DB. for all minimal energy
Skyrmions with B < 22, These values were computed by relaxation of
the full Skyrme energy function with initial conditions created from the
corresponding rational map (see ref. [43] for further details). We also it
the energy E. the ionization energy | = Ep_y + E; ~ Eg. which is the
energy required to remove a single Skvrmion, and the binding energy per
barvon given by AE/DB = E; — (E/B). which is the energy required to
separate the solution into single Skvrinions divided by the total baryvon
number.

In Fig. 9.4 we plot barvon density isosurfaces (to scale) for each of the
Skyvrmions with 7 < I3 < 22, and also display models (not to scale) of the
associated polvhedra. For all charges except B = 9 and B = 13 (which
we discuss below) the Skvrimnions are fullerene-like, and the associated
polvhedra can be found in the classification of fullerenes {137].

A particularly interesting example is the B = 17 Skyrmion, which bas
the icosahedrally symmetric structure of the famous Cgy Buckyball, a
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Table 9.5. A summary of the symmetries and encrgies of the Skyrmion config-
urations which have been identified as the energy minima. Included also are the
ionization energy I - that required to remove one Skyrmion - and the binding
energy per Skyrmion AE/B - the energy required to split the charge B Skyrmion
into B charge 1 Skyrmions divided by the total number of Skyrmions. (*) This
svmbol indicates Skyrmions whose angular form differs from that of the minimal
cnergy solutions within the rational map ansatz. (**) The values quoted for
B = 14 are computed using an initial configuration with Ds syminetry.

B K E/B E I AE/B
1 O(3) 12322 12322 0.0000 0.0000
2 Dyp 11791 23582  0.1062 0.0531
3 Ty 11462 3.4386 0.1518 0.0860
1 On 11201 44804 0.1904 0.1121

Dyy  1.1172 55860 0.1266 0.1150
Dy 11079 6.6474  0.1708 0.1243
10947 7.6629 0.2167 0.1375
D¢y 1.0960 8.7680 0.1271 0.1362

Dyy; 10936 9.8424 0.1578 0.1386

10* Dy 1.0904 10.9040 0.1706 0.1418
11 D3,  1.0889 11.9779 0.1583 0.1433
12 T, 10856 13.0272 0.1829 0.1466
13 O 1.0831 14.0842 0.1752 0.1488
4**  Cy  1.0842 15.1788 0.1376 0.1480
15 T 1.0825 16.2375 0.1735 0.1497
16* D, 1.0809 17.2944 0.1753 0.1513
17 Y, 1.0774 183158 0.2108 0.1548
13 D,  1.0788 19.4184 0.1296 0.1534
19 D3 1.0786 20.493% 0.1572 0.1536
20 D¢y 1.0779 21.5580 0.1676 0.1543
21 Ty 1.0780 22.6380 0.1522 0.1542
22%* D;  1.0766 23.6852 0.1850 0.1556
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Fig. 9.4. Baryon density isosurfaces for 7 < B < 22, and the associated sym-
metry groups and polyhedral models (not to scale).
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indicated earlier. It is formed from 12 pentagons and 20 hexagons and is
the structure with isolated pentagons having the least number of vertices.
The decomposition which determines the relevant rational map is

18y =E, &G 320, (9.76)

whose single two-dimensional component E) demonstrates that there is a
unique Y-symmetric degree 17 map. In fact. the map is [193]

17215 — 187210 411925 — 1

R(z) = - ) )
)= A T s T 18T 5 1) (9.77)

and it is Yj~symmetric.

In general, even in highly symmetric cases there will still be a few
parameters in the family of symmetric maps of interest. For example, the
decomposition

bn+dir =nE' & (na1)E] @ (n21)E,. (9.78)

valid for any non-negative integer n. shows that there is an n-parameter
family of tetrahedral maps of degree B = 6n + 3. corresponding to the
middle component in the above. For n = 0,2.3 (B = 3.15.21) this family
includes the minimal energy map, and for n = 1 (B = 9) it includes a
map which is very close to minimal. Thus it seems possible that other
members of this family will be minimal maps, for example, for B = 27.
The explicit form of all the relevant rational maps for B < 22 can be
found in ref. [15].

The charge B = 9 and B = 13 Skyrmions are not fullerene-like. Their
svinmetry groups. Dyg and O. both contain Cy subgroups. and this is
incompatible with the trivalent vertex structure of a fullerene. As can
clearly be seen in Fig. 9.4, these Skyrmions both contain tetravalent ver-
tices. which can be obtained from fullerenes by a process known as svin-
metry enhancement (see Fig. 9.5).

Fig. 9.5.  An illustration of symmetry enhancement.
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Consider part of a fullerene with the form shown in Fig. 9.5(a), consist-
ing of two pentagons and two hexagons with a Ca symmetry. The symiue-
try enhancement process shrinks the edge common to the two hexagons
(the thick line) to zero length, resulting in the coalescence of two vertices.
The object formed is shown in Fig. 9.5(b). It has a tetravalent vertex
connecting four pentagons and the symmetry is enhanced to C,. We
find. empirically, that pairs of symmetry enhancement processes occur on
antipodal edges of a fullerene structure.

There is a Cyy fullerene with Dy symmetry (denoted 28:1 in ref. [137])
that contains two of the structures shown in Fig. 9.5(a). If symmetry
enhancement is performed on both, then the resulting object is precisel:y
the D, configuration of the B = 9 Skyrmion described earlier. There are
also Dso-symmetric Cyy fullerenes (denoted 44:75 and 44:89 in ref. (137
with an equal number of pentagons and hexagons (12 of each), and a very
symmetric configuration can be obtained by symmetry enhancement at
all six possible vertices, which results in the cubic B = 13 Skyrmion,

In the context of fullerenes it is, of course, impossible for vertices to
coalesce since they correspond to the positions of the carbon atoms, but
for Skyrmions the vertices represent concentrations of the baryon density
and they need not be distinct: it just appears that in most cases it ix
energetically favourable to have distinct vertices. Note that, by an exam-
ination of the baryon density isosurface by eve, it can often be difficult to
identify whether a given vertex is trivalent or tetravalent, since the edge
length which must be zero for symmetry enhancement could be small. but
non-Zero.

Although we do not have a general global characterization of the vor-
tices of the polyvhedron associated with a rational map (as we do for the
face centres. via the Wronskian) it is possible, by a local analysis of the
rational map, to check whether a given point is a local baryon density
maximum and to obtain its valency. By using the freedom to ;')(‘rforxix
rotations of both the domain and target 2-spheres it is always possible to
choose the given point to be z = 0 and the rational map to have a local
expansion

R(z) = a(z + 3" 4+ 0(z"*2), (9.791

where a and 3 are real positive constants. (The derivative of the map
is non-zero at = = 0, since the baryon density is assumed to be non-zero
there.)

Substituting the expansion (9.79) into the expression for the angular
contribution to the baryon density (9.59) we obtain the following result.
Ifp=1thenz=0isnotavertex. If p>2anda>1thenz=0is
a p-valent vertex. with the baryon density being a local maximum there.
The remaining case of p = 2 is a little more subtle. In many cases.
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all the local maxima of the baryon density correspond to vertices of the
polyhedron. However, in some cases (the lowest charge example being
B = 5) some of the maxima are at edge midpoints. Such edges may
consequently appear thicker than others. The rational map description of
such a bivalent maximum is the p = 2 case, and a local maximum requires
that a > 1+ 353.

To illustrate this analysis, consider the cubic B = 13 Skyrmion. For
computing O-symmetric degree 13 maps the relevant decomposition is

U|o =2E, & L 926", (9.80)

From the 2E) component there is a 1-parameter family of maps, with the

explicit form

z(a + (6a — 39)z* — (7a + 26)2° + 212)
1 —(7a + 26)z* + (6a — 39)z% + @212 ’

R(z) = (9.81)
whose minimal value of T occurs at @ = 0.40 + 5.18i. This gives a
Skyrme field whose baryon density is virtually identical to the one shown
in Fig. 9.4. The associated polyhedron is similar to a cube, each face
of which consists of four pentagons with a tetravalent bond. In order
for them to fit together, with all the other bonds being trivalent, each
of the six faces must be rotated slightly relative to the one diametri-
cally opposite, which removes the possibility of the cube having reflection
symmetries and symmetry group Oy. The polyhedron has 24 pentagonal
faces. as opposed to the 12 pentagons and 12 hexagons that would have
been expected of a fullerene structure. Expanding the map (9.81) about
z =0 gives

R(z)=az+ (7> —32a — 39) +--- , (9.82)

and since {a| > 1, a comparison with Eq. (9.79) confirms that the point
z = 0 is a tetravalent vertex. The B = 9 minimizing map also contains
tetravalent vertices (this time two of them) and this can be checked in a
similar way.

A more global characterization of the vertices would be useful. Usually
they correspond to local maxima of the integrand defining 7 in Eq. (9.63).
This density depends on the modulus of the rational map and its deriva-
tive, but there is generally no simple formula for finding its maxima.
However. in particularly symmetric cases the vertices can be identified
with the zeros of the Hessian. Explicitly, the Hessian is the polynomial

H(z)= (2B - )W (2)W"(z) - (2B - 3)I1"'(2)2. (9.83)

where W(z) is the Wronskian. It has degree 4(B — 2), which is consistent
with the GEM rule for the number of vertices. For example, for the
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icosahedral rational map describing the minimal energy B = 7 Skyrmion.

2T =75 -T2 -1

k(z) = 2T 4T -T2+ 1 (984)
the Hessian is
H(z) = ~8624(z% — 228217 + 49420 + 2282° + 1), (9.85)

which is proportional to the Klein polynomial Yy associated with the
vertices of a dodecahedron [237].

9.7 Lattices, crystals and shells

So far we have only discussed Skyrmions with a finite baryon number.
but in fact the lowest known value for the energy per baryon, E/B, oc-
curs for an infinite crystal of Skyrmions. As we have seen, for certain
relative orientations, well separated Skyrmions attract. At high density
it is expected that the Skyrmions will form a crystal, though a Cryst;;]
structure has not vet been seen dynamically for a finite baryon number,
probably due to the fact that so far only simulations up to B = 22 have
been performed.

To study Skyrmion crystals one imposes periodic boundary conditions
on the Skyrme field and works within a unit cell (equivalently, 3-torus)
T3. The first attempted construction of a crystal was by Klebanov [235}'.
using a simple cubic lattice of Skyrmions whose symmetries maximize the
attraction between nearest neighbours. After relaxation, Klebanov's crvs-
tal has an energy 1.08 per baryon. Other symimnetries were proposed which
lead to slightly lower. but not minimal. energy crystals {160, 221]. Fol-
lowing the work of Castillejo et al. [75] and Kugler and Shtrikman [248].
it is now understood that it is best to arrange the Skyrmions initially as a
face-centred cubic lattice, with their orientations chosen symmetricz;Hy to
give maximal attraction between all nearest neighbours. Explicitly, the
Skyrme field is strictly periodic after translation by 2L in the 2,12 or
x3 directions. A unit cell is a cube of side length 2L, with Skyrmions in
standard orientation on the vertices, and further Skyrmions at the face
centres, each rotated by 180° about the axis which is normal to the face.
With this set-up each Skyrmion has twelve nearest neighbours which are
all in the attractive channel. Inside one unit cell, the total baryon num-
ber is B = 4. If we fix the origin at the centre of one of the unrotated
Skyrmions, this configuration has the combined spatial plus isospin sym-
metries generated by

(1111“271‘3) aand (_Ilvxzirs) ’ {Ux 7?197}’2!7:3) = (Us "‘ﬂ’l,ﬂ'z,ﬂ'g); (986)
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1 2

(x, 23, 2%) — (2%, 2%, 2'), (0,71, M2, m5) s (0, Mo, W3 m1) ;. (9.87)

(' 2%, 2%) o (2!, 2%, -17), (o, m, M2, m3) = (0,71, 73, —3) ; (9.88)

(rL2?, %) — (' + L, 2? + L, 2%, (o, T, W2, W3) = (0, =T, 79, 73) .
(9.89)
Svmmetry (9.86) is a reflection in a face of the cube, (9.87) is a rotation
around a three-fold axis along a diagonal, (9.88) is a four-fold rotation
around an axis through opposite face centres. and (9.89) is a translation
from the corner of the cube to a face centre.

At low densities (large L), the Skyrmions are localized around their
lattice positions, each having an almost spherical isosurface where o = 0,
separating the core of the Skyrmion (o < 0) from its tail (¢ > 0). Since
the Skyrmions are well separated. the average value of ¢ in a unit cell,
(o), is close to one.

As the density is increased (that is, L reduced) the energy decreases
and there is a phase transition to a crystal of half-Skyrmions. At this
point the symmetry is increased by the addition of the generator

(12?23 — (' + L, 2% 2%), (0,71, 72.7m3) — (-0, -7, T2.T3),
(9.90)
a translation half-way along the cube edge. Note that this symmetry
involves a chiral SO(4) rotation, rather than just an SO(3) isospin trans-
formation as before. The previous translational symmetry (9.89) can be
obtained by applying this new generator, together with this generator
rotated by 90°.
This phase is where the minimal energy Skyrme crystal occurs. The
o < 0 and o > 0 regions are perfect cubes of side length L, with ¢ = 0 on
all the faces. Each cube has identical pion field distributions and baryon
uumber % For this configuration, {¢) = 0, and there is a restoration
of chiral symmetry. The minimum of the energy occurs at L ~ 4.7.
A variational method, based on a truncated Fourier series expansion of
the fields, approximates the energy per baryon to be E/B = 1.038, and
a recent numerical calculation [42], using far larger grids than previous
studies [75], gives a very similar value of E/B = 1.036. In Fig. 9.6 we plot
a barvon density isosurface for the Skyrme crystal. Each lump represents
a half-Skyrmion and the total baryon number shown is 4. The fields
obtained either numerically, or by optimizing the Fourier series, are very
well approximated by the analytic formulae [75]

o = Cieecy., (9.91)
2 2 2.2
m o= —51\/1 -~ 225 - -%5 + S?:“ and cyclic. (9.92)
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Fig. 9.6. A baryon density isosurface for a portion of the Skyrme crystal.

where s; = sin(rz'/L) and ¢; = cos(rx/L). This approximation to the
Skyrme crystal field has the right symmetries and is motivated by an
exact solution for a crystal in the two-dimensional O(3) sigma model.
which has a similar form but with the trigonometric functions replaced
by Jacobi elliptic functions.

Table 9.5 shows that the energy per baryon of the shell-like Skyrmions is
decreasing as B increases, but is still some way above that of the Skyrme
crystal. The asymptotic value of E/B for the shell-like structures for
large B can be compared with the value for the crystal by studying yet
another periodic arrangement of Skyrmions, a two-dimensional lattice.
rather than a three-dimensional crystal.

In very large fullerenes, where hexagons are dominant, the twelve pen-
tagons may be viewed as defects inserted into a flat structure, to generate
the curvature necessary to close the shell. Energetically, the optimum
infinite structure is a hexagonal lattice, that is, a graphite sheet - the
most stable form of carbon thermodynamically. The reason that closed
shells are preferred for a finite number of carbon atoms is that the penalty
for introducing the pentagonal defects is not as severe as that incurred
by having dangling bonds at the edges of a truncated graphite sheet. A
prediction of the fullerene approach to Skyrmnions is the existence of a
Skyrme field analogous to a graphite sheet. This configuration would
have infinite energy, since it has infinite extent in two directions, but its
energy per baryon should be lower than that of any of the known finite
energy Skyrmions, and will be the asymptotic value approached by large
fullerene-like Skyrmions.
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Such a hexagonal Skyrme lattice can be constructed using the ansatz
of ref. [42]

Uz, 22, 2°) = exp ( (Rr_ + Rry +(1 - 1312)13)) . (9.93)

i
1+ |Rf?
a variant of the rational map ansatz. Here 74+ = 7 £ imy, R is a mero-
morphic, periodic function of z = z! 4 ix?, and f is a real function of z3
chosen so that the Skyrme lattice physically occupies the (z!,z?) plane.
The direction of the vector of pion fields is determined by R(z), whereas
the magnitude of the vector also depends on the profile function f, and
hence on the height above or below the lattice. If ©; and Q5 are the
fundamental periods of R(z). then

Uz +ny + mQy, 23) = Uz,z3) YnmeZ. (9.94)

Let T? denote the associated torus, the parallelogram in the complex
plane with vertices 0,2, €27,y + 2 and opposite edges identified.

To understand the boundary conditions on f we need to recall our
motivation. The lattice is being thought of as an infinite limit of the
shell-like Skyrmions containing pentagons and hexagons. Thus, below
the lattice is the outside of the shell, where U — 15. Above the lattice
is the inside of the shell, where the Skyrme field is approaching the value
associated with the centre of the Skyrmion. so U — —15. We therefore
require

f(=x)=0, f(x)=mr. (9.95)

This implies that the Skyrme lattice is a novel domain wall, separating
differing vacua.

To compute the baryon number and energy of the Skyrme field (9.93) it
is again convenient to use the geometrical strain formulation. The strain
in the direction normal to the lattice is orthogonal to the two strains
tangential to the lattice, which are equal. A; may be interpreted as the
strain in the x' direction. and it is easy to show that

A =X=2Jsinf, A\3=f, (9.96)
where
1 dR

J = ———]. 97
14 |R]2|d= (9.97)

Therefore, the energy and baryon densities (9.12) are

_ 1 r 20 £2 L 2 1.4

£ = Er—}(f + 8J°(f +sin” f) + 16J " sin f), (9.98)

2 .
B = 7—r-2-J2f' sin? f . (9.99)
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We now compute the baryon number B in a fundamental region of the
lattice, 73 € (—oc,oc) and (x!,2%) € T2. Since R is a map from T? to S2,
its degree. k, is the integral over T? of the pull-back of the area 2-form
on S2. dRdR/(1 + |R|?)?, that is

k= ;1,"/11-2 J? drldz?, (9.100)

since R is a holomorphic function of z. Using (9.99) it is now easy to see
that the baryon number is equal to the degree k, since
2

X g2 3 2 , 0,2 K 1.
Bz—/_xf'sm fdr /II‘:'J dr'dr == f—§mn2f

72

=k,
(9.101)

20
hade 9]

using (9.100) and the boundary conditions (9.95).
To calculate the energy E in the fundamental region it is useful to
introduce a scale parameter ., write u = r3/u and set f(z®) = g(u).

Then, if A is the area of the fundamental torus T?, integrating the density
(9.98) gives

x . 1.2 A 1 I
E= [ d [Ezc‘:d;r art =SB+ Byt uE+ 5B 010

where
1 x 2k [x
E, = 'lﬁ,/ grz du, E;,= _n'/ grz sin2g du,
— -
2k > . 17 > |
Es = i sinfgdu. Ej= 57}7/ sinfgdu.  (9.103)
- - C

E depends on the map R only through the quantity

= AAH Jdrdr?, (9.104)

a combination independent of A. The scale y and arca A are fixed in

terms of the E;’s. by minimizing (9.102). Requiring %% = 3—5 = ( gives

it = \/EQ/E;;, A = VEQE:;/E]E;;. (9.1()5)
and hence the minimized energy is
E =2(VE\E; + VEE3). (9.106)

To proceed further we choose R(z) to be an elliptic function with a
hexagonal period lattice. The simplest is the Weierstrass function p(z)
satisfying

W2 =47 -1). (9.107)
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which has periods ) = I‘(%)F(%)/(?\/Sﬁ) and Qy = ; exp(ni/3). Ob-
viously we can scale both the elliptic function and its argument and still
have a hexagonal period lattice; hence we take

R(z) = cp(z/a), (9.108)

where ¢ and « are arbitrary real constants. For computational purposes
it is actually more convenient to work with a rectangular fundamental
torus, (z!,1%) € [0,af] x [O,a\/gﬂl], whose area is A = \/§a29%. As
this torus contains two fundamental parallelograms and the p-function
has one double pole in each, then by counting preimages, we see that the
degree of the map from the rectangular torus to the sphere is k = 4.

E is minimized by choosing ¢ so as to minimize Z. The minimal value
is 7 = 193, when ¢ = 0.7. (Recall that 7 is independent of a.)

We now make the simplifying ansatz that g(u) is the sine-Gordon kink
profile function

g(u) = 2tan~le*, (9.109)

which is a reasonably good choice. and has the advantage that all the
integrals in (9.103) can be performed exactly. The results are

1 32 16 16T
L] =, E = e—, E- = —, Ly = —F, A
Br=gm =g b= Bi=gn (9.120)

from which we find that the scale and area are

] 8
u,—a\/;. A_gﬁ. (9.111)

and using (9.106). that the energy is

1 2
E= 5}’5\/5("6* 87). (9.112)
Recalling the numerical value of Z, and that B = k = 4, we thus find an
energy per baryon
E/B =1.076. (9.113)

The true lattice has been determined by numerical relaxation. using the
ansatz above, involving the Weierstrass function and sine-Gordon kink
profile, to give a starting approximation [12]. Its energy is found to be

E/B =1.061. (9.114)

In Fig. 9.7 we display a surface of constant barvon density for this hexag-
onal Skyrme lattice. The structure is clearly visible, the baryon density
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Fig. 9.7. A baryon density isosurface for a portion of the Skyrme lattice.

having a hole in the centre of each of the hexagonal faces. Note that
the displayed region contains exactly eight full hexagons and has baryon
number 4. so each hexagon may be thought of as having baryon number
%. This is the expected limit of the polyhedron structures discussed ear-
lier, where a charge B Skyrmion has 2(B — 1) faces. Other lattices, such
as a tetravalent square lattice, can be created by choosing a Weierstrass
function different from (9.107), but these have energies which are slightly
higher than the trivalent hexagonal lattice.

Since the energy per baryon of the Skyrme lattice exceeds that of the
Skyrme crystal it is reasonable to expect that above some critical charge.
the minimal energy Skyrmion will resemble a portion of the crystal rather
than a shell constructed from the planar lattice by inserting pentagonal
defects. As the crystal is basically a stack of B = 4 cubes, B = 32 is
the first charge at which any sizeable, symmetric chunk of the crystal
can emerge. Attempts have been made [35] to construct Skyrme fields by
cutting out a portion of the crystal and interpolating its surface fields to
the vacuum, but these all have rather high energies.

An alternative to either a single-shell or crystal structure is a two-shell
structure. This has been investigated [290] using yet another variant of
the rational map ansatz,

U(r,2) = exp(8(ro—=7)i fu(r)Bp, o) T +O(r = ro)ifa(T) ARy 7) y (9:115)

where 0(r) is the Heaviside step function and ry is a radius where the two
shells meet. The two profile functions, fi and f,, satisfy the boundary
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conditions f1(0) = 27, fi(rg) = falro) = 7, fo(oc) = 0, and the angular
distributions of the fields on the two shells are determined by two rational
maps Ry and Ry, with degrees k1 and k3 respectively. The baryon number
of this configuration is B = k; + k. The multi-shell generalization is
obvious.

Some two-shell and three-shell configurations for B = 12,13, 14 have
heen studied. and also used as initial configurations in a numerical relax-
ation of the full Skyrme energy. In most cases they relax to a single-shell
structure, with energy a bit higher than that described in Section 9.6,
so they probably describe saddle points. Note that two-shell configura-
tions have U = 13 at the origin, so can not relax to the minimal energy
single-shell Skyrmions discussed in Section 9.6, for which U = —15 there.

The two-shell ansatz with baryon number k; + k2 has an interpretation
in terms of ky + k2 individual Skyrmions on a single shell, which is often
the end point of a numerical relaxation. To see this, consider U(r, z)
for a given value of z, and compare the values of U at the two radii
where fi{r) = %n’ and fo(r) = %fr. If these values are close, the field
configuration along this radial line can be relaxed to be approximately
constant. but if they are antipodal then the radial gradient energy is
large and may be interpreted as due to a single Skyrmion at r = rg, with
angular location z. The condition that the values of U are antipodal is
that Ry(z) = Ra(z), since the rational maps then have the same value but

the profile functions have opposite sign. that is, sin fj = —1,sin fo = 1.
If Ry = pi/q1 and R2 = p2/qo then the antipodal condition is
pi(2)g2(2) — p2(2)m(z) = 0, (9.116)

which is a polynomial equation of degree ky + k2. The k; + ko roots
determine the angular locations of the Skyrmions on the shell r = ry.

In summary, there are a number of alternatives to a single-shell struc-
ture for Skyrmions and what is remarkable is that none of these alterna-
tives appears to give minimal energy Skyrmions for B < 22. However,
single-shells can not be the whole story for large enough baryon number.

9.8 Skyrmion dynamics

In the preceding sections we have been concerned with static Skyrmions,
but in this section we turn to Skyrmion dynamics and scattering. To
begin with, we describe how some of the static, symmetric, minimal en-
ergy Skyrmions can be formed from the collision of well separated single
Skyrmions [40].

The time dependent Skyrme field equation is solved using a finite dif-
ference method (see ref. [45] for a detailed discussion). which is most
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conveniently implemented using a nonlinear sigma model formulation.
Explicitly, the Skyrme field is parametrized by the unit 4-vector ¢ =
(0, 7,2, 73), in terms of which the Lagrangian density becomes

L = 0,6-0"6=}(8,0-0"6)* + §(0,0-0,0) (060" 0)+ M(¢-0~1), (9.117)

with the Lagrange multiplier A introduced in order to enforce the con-
straint @ - ¢ = 1.
The Euler-Lagrange equation is

(1 - aud) ' a“é)auaﬂé - (au¢ . 6;40u¢ - ap‘ﬁ . auau.é)é)“@

where A can be calculated by contracting (9.118) with ¢ and using the
second derivative of the constraint, giving

A= (0,0 0,0)("0- 070) — (1 = 0,0+ 0"0)Dyo- #6.  (9.119)

The simplest possible scattering event involves the head-on collision
of two Skyrmions in the attractive channel. As discussed in Section
9.3. an initial configuration can be constructed using the product ansatz
U = UMUD for well separated Skyrmions, each of which may also be
independently Lorentz boosted. An example that has been calculated has
an initial configuration consisting of two Skyrmions with positions

X, =(0,0,a), Xs=(0.0.—d), (9.120)

where a = 1.5; the second Skyrmion is rotated relative to the first by a
180° rotation around the r?-axis, and each Skyrmion is Lorentz boosted
towards the other with a velocity v = 0.3, in order to speed up the inter-
action.

Figure 9.8 shows an isosurface plot of the baryon density at regular time
intervals. We see that the initially well separated Skyrmions deform as
they come together, before coalescing into a toroidal configuration very
close to the exact minimal energy B = 2 Skyrmion. The torus then
breaks up. with the result that the Skyrmions scatter at right angles.
This right-angle scattering was predicted analytically [283] and is a fa-
miliar property of two-soliton scattering: for example, we have alreadv
seen that monopoles and vortices exhibit this behaviour. The Skyrmions
then attract once more and pass through the torus again. This almost
elastic process repeats itself a number of times, with a little energy being
radiated each time, eventually settling down to the exact static solution.

In order to discuss attractive configurations of B > 2 Skyrmions we first
introduce some notation. Take the positions of the single Skyrmions to be
X;fori=1,..., B, and define the relative position vectors X;; = X;-X;.
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Fig. 9.8. Baryon density isosurfaces at increasing times during the head-on
collision of two Skyrmions.

Suppose the orientation of the Skyrmion at X; relative to that at X is
obtained by a rotation by 180° about an axis with unit vector n;;. Then
all pairs will mutually, maximally attract if X;; - n;; = 0 (no sum) for all
i # .

Three Skyrmions can scatter close to the tetrahedral B = 3 Skyrmion.
In choosing Skyrmion initial configurations, the analogous monopole scat-
tering is a good guide. Recall from Chapter 8 that the tetrahedral 3-
monopole is formed during the C3-symmetric scattering in which three
monopoles are initially on the vertices of a large contracting equilateral
triangle. We therefore take three well separated Skyrmions in such a
configuration, with

X; = (~a,~-a,—a), Xz=(-a,a.a), X3z=(a.—a.a). (9.121)

The first Skyrmion is in standard orientation, and the orientations of the
second and third are fixed by taking

ni2 = (1,0,0)., ny=(0.1.0). (9.122)

This implies that nyz = (0,0. 1), so all pairs are in the attractive channel.
since X;j - myj = 0 for all ¢ # 5.

Again we choose a = 1.5, and this time each Skyrmion is boosted to
have an initial velocity of v = 0.17 towards the centre of the triangle. The
evolution of this configuration is shown in Fig. 9.9.
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Fig. 9.9. DBaryon density isosurfaces at increasing times during the scattering
of three Skyrmions with approximate C3 symimnetry.
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We should point out that the C3 symmetry is slightly broken by the
product ansatz implementation of the initial data, U = U My@yd),
which is clearly asymmetric under permutations of the indices. If a were
larger, the product ansatz would be closer to having exact cyclic symme-
try.

The Skyrmions deform as they coalesce, and each behaves slightly differ-
ently. The dynamics is, nonetheless, remarkably similar to the monopole
case, except for the influence of the varying potential energy, in that the
Skyrmions form an approximately tetrahedral configuration, which then
splits into a single Skyrmion and a charge 2 torus.

We have seen a second scattering process passing through the tetrahe-
dral 3-monopole - the twisted line scattering of three collinear monopoles.
A similar scattering process also occurs for three collinear Skyrmions with
appropriate orientations [40].

Recall that four monopoles on the vertices of a contracting regular
tetrahedron scatter through the cubic charge 4 solution. There is an
analogous four-Skyrmion scattering process. To the B = 3 system given
by (9.121) and (9.122), we add a fourth Skyrmion at X4 = (a.a, —a) with
orientation given by nyy = (0.0.1). This completes a regular tetrahedron.
The additional relative orientations are nag = (0.1,0) and n34 = (1.0,0),
so still we have X;;-n;; = 0 for all i # j, and all Skyrmion pairs maximally
attract. Once more we take a = 1.5, but this time no initial Lorentz boosts
are required, because of the strong attractions.

The evolution of this configuration is displayed in Fig. 9.10. The mutual
attractions cause the Skyrmions to coalesce and form a cubic configura-
tion. This then splits up. and the Skyrmions are found on the vertices
of a tetrahedron dual to the initial one. Again the product ansatz imple-
nmientation results in the tetrahedral svmmetry being only approximately
attained. Aside from this technicality. however, the scattering process is
once again a close copy of what happens for monopoles.

Another configuration is four Skyrmions on the corners of the square

X; = (a,q,0), X7 = (a,-0a,0), X3 =(-a,-a,0), Xy=(—a,a,0).
(9.123)
If
np = (1.0,0) , Im3 = (0,0,1) , g = (0,1,0) y (9.124)

then nog = (0,1,0), ngy = (0,0.1), ngy = (1,0,0) which implies that all
pairs mutually attract. The dynamics of this configuration is exhibited
in Fig. 9.11 for initial conditions with no Lorentz boost. The initial Dy-
svimetric configuration scatters through the B = 4 cube and emerges as
two B = 2 tori; yet another well known monopole process.

Given that N-monopole dynamics at low energy can be well approxi-
mated by geodesic motion on the monopole moduli space, a natural ques-
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Fig. 9.10. Barvon density isosurfaces at increasing times during the scattering
of four Skyrmions with approximate tetrahedral symmetry.

tion is whether a similar moduli space approximation exists for Skyrmions.
Since there are weak forces between Skyrmions, the moduli space of the
exact minimal energy Skyrmion of charge B does not contain adequate
degrees of freedom to describe all the required low energy configurations.
It is at most nine-dimensional, corresponding to the action of transla-
tions, rotations and isospin rotations on the otherwise unique solution.
Another manifold Mpg, whose coordinates parametrize a suitably larger
set of low energy field configurations, is required. ldeally, dim Mg = 6B.
since this is the dimension of the space of B well separated Skyrmions
with all possible orientations.

An obvious candidate for Mg is the parameter space of field configura-
tions obtained using the product ansatz for B Skyrmions. This is certainly
6 B-dimensional and adequately describes well separated Skyrmions, but
it is not acceptable since the product ansatz fails near the minimal energy
charge B Skyrmion. For example, the product ansatz for two Skyrmions
satisfactorily defines M3 when the Skyrmion separation is large compared
to the Skyrmion size, and the energy initially decreases in the attractive
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¢ d

Fig. 9.11. Baryon density isosurfaces at iucreasing times during the scattering
of four Skyrmions with approximate Dy symmetry.

channel as the separation is reduced, as we have seen from the calcu-
lation of the asymptotic interaction energy in Section 9.3. However, as
the separation is reduced further the interaction energy obtained from
the product ansatz begins to increase {218] and a product of coincident
Skyrmions does not resemble the minimal energy B = 2 torus.

A more promising definition [284] of M is as the unstable manifold of
the spherically symmetric B = 2 hedgehog solution, which we discussed
in Section 9.2. This saddle point solution may be thought of as two co-
incident Skyrmions, with one wrapped around the other. (It is also well
approximated in the product ansatz by two coincident Skyrmions with
the same orientation.) It has six unstable modes, and six zero modes,
three translational and three rotational. Of the six unstable modes, three
correspond to rotating one of the Skyrmions with respect to the other.
while three are associated with separating the Skyrmions. The union of
gradient flow curves descending from the B = 2 hedgehog in all possible
positions and orientations is a 12-dimensional manifold. A generic curve
will end at the minimal energy B = 2 torus, but a submanifold of curves
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will end at infinitely separated Skyrmions. Curves close to this submani-
fold will go out to well separated Skyrmions and then return to the torus.
This definition of My will therefore include well separated Skyrmions in
all possible orientations, but it will also include the low energy configu-
rations where the Skyrmions are close together.

An attempt has been made to construct My numerically [409] by solv-
ing the gradient flow equation

Ry — i[R,; {Ri, Rol} = 0;(R; — %[ij [Rj, Ri]]). (9.125)

Particularly interesting is one of the steepest and shortest gradient flow
trajectories, where the constituent Skyrmions of the hedgehog simulta-
neously separate a little, and twist, then recombine into the torus. A
systematic construction of some two-dimensional submanifolds of M3 has
been carried out, and with the action of the nine-dimensional symmetry
group this is effectively a construction of some 11-dimensional subman-
ifolds of Mjy. The 10-dimensional attractive channel of two Skyrmions
has also been found using the gradient flow, starting with well separated
Skyrmions. However, it is difficult numerically to implement gradient
flow in regions where the Skyrmions are well separated. As a technical
simplification, in this region the product ansatz can be used. In fact for
well separated Skyrmions the gradient flow equations within the product
ansatz can be solved exactly [211]. In conclusion, the work in [409] and
[211] shows that it is feasible, if difficult, to construct Ms using numerical
gradient flow.

Given the manifold M, one can now attempt to define a truncated
dynamics on it by restriction of the Skyrme Lagrangrian. Note that.
unlike the moduli space approximation for monopoles, there will be both a
non-trivial metric and potential energy function on M. These have been
partly calculated in ref. [409]. The potential is easy to calculate along any
gradient flow curve. The metric coeflicient along a gradient flow curve can
be inferred from the rate at which the potential energy decreases. Several
of the remaining metric coeflicients are (spin and isospin) moments of
inertia of the configurations generated during the gradient flow. The
topography of M3 is a valley within the infinite-dimensional configuration
space of B = 2 Skyrme fields. with the attractive channel being an almost
flat submanifold of this. The highest point in M3 is the B = 2 hedgehog.
whose energy is about one and a half times that of either the torus or
well separated Skyrmions. So at really low energies the region near the
hedgehog will not be explored, even though this is the solution on which
the whole construction of My is based. The fact that the valley is not
precisely flat, because of the weak inter-Skyrmion forces, means that the
motion can not be assumed to be vanishingly slow. For example. the
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attraction of two Skyrmions may build up modest speeds even if they
start at rest.

In principle, M p could be the unstable manifold of the charge B hedge-
hiog solution. The product ansatz suggests that this solution has 6B — 6
unstable modes and six zero modes. However, a practical implementation
i even less feasible.

In the simpler case of a (2+1)-dimensional Baby Skyrme model, a rather
differently defined moduli space involving both a metric and a potential
function has been constructed to study the classical dynamics of two
solitons [388], and yields results which are in good agreement with full field
simmulations. The Baby Skyrme model may be considered as a deformnation
of the O(3) sigma model, for which a precisely defined moduli space, M, of
static Bogomolny lump solutions exists. M, with a deformed metric, is a
suitable approximate moduli space for the deformed theory. The potential
is approximated by evaluating the energy of sigma model lumps using the
Baby Skyrmion potential energy function. Unfortunately the Skyrme
model can not be treated in this way as there is no known deformation of
the model to a nearby one with Bogomolny equations.

A related aspect of Skyrmion dynamics is of interest, namely, an ana-
lvsis of the vibrational modes of minimal energy Skyrmions. This leads to
a model of the linearization of the moduli space Mg, near the Skyrmion.
The low frequency vibrational modes provide a coordinate independent
description of the configuration space around the static solution. Calcu-
lating the frequencies of the lowest-lying vibraitional modes also provides
a first step in an attempt to quantize the Skyrmion within a harmonic
approximation. We will not discuss the quantization aspect, but we will
discuss how the vibrational modes of Skyrmions provide vet another link
to monopoles.

A numerical computation of the vibration frequencies. and the classifi-
cation of degenerate modes into irreducible representations of the symme-
try group of the static Skyrmion, has been performed for charges B = 2
and B = 4 [34], and a qualitative analysis has been given for B = 7 [36].
The method employed is to solve a semi-linearized form of the time depen-
dent Skyrme equation, with as initial condition a rather general, slightly
perturbed Skyrmion. The frequencies of the normal modes are found by
Fourier transforming the fields at a given spatial location with respect to
time. The spectrum obtained can be divided into two parts, correspond-
ing to vibration frequencies below and above that of the breather mode.
which is the oscillation corresponding to a change in the scale size of the
Skyrmion. We are more interested in the lower-lying modes below the
breather, since they can be identified with variations of the parameters
in the rational map describing the static Skyrmion.

To be specific, let us consider the vibrations of the cubic B = 4
Skyrmion. whose modes lie in multiplets transforming under real irre-
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ducible representations of the octahedral group O. The computations of
ref. [34] reveal that there are nine modes below the breather, which trans-
form under the representations E, Ay, Fy, F2, in order of increasing fre-
quency.

Recall that the rational map of degree 4 with octahedral symmetry is

2+ 2vB3i22 41
2 232241

The general variation of this map, in which we preserve the leading coef-
ficient, 1, of the numerator as a normalization, is

Ro(z) = (9.126)

(2) = At +(2VBi+ )2 vz + 146

— S = ~ (9.127)
(Q+N: 423+ (2VBi+ )2 4024147

where a,3,7,0, A, i, v, g, 7 are small complex numbers. We now calculate
the effect of the transformations of the octahedral group. For example, the
90° rotation, represented by the transformation R(z2) — 1/R(iz) leaves
Ry fixed. but transforms the more general map R(z) to

ft.( ) = (1+A)34“51133+(2\/‘3i—i/):2+'ia:+ 147
A —iad - (2VBi+ 3)22 4 iz + 146

(9.128)

Normalizing this by dividing top and bottom by 1 + A, and ignoring
quadratic and smaller terms in the small parameters, we get

B(z) = A (VB - v - 2VBiN2 tioz+14+T - A
=N a4 (—2VBi- B+ 2VBiN) 2 iy 1+ 8- A
(9.129)

Hence, the transformation acts linearly on the nine parameters o, ...,
via a complex 9 x 9 representation matrix that can be read off from this
expression. As we want to deal with a real representation, we consider
this as a real 18 x 18 matrix. The only contribution to the trace of this
matrix is associated with the replacement of A by — X in the leading term
of the denominator. Since A has a real and imaginary part, the character
of the 90° rotation in this representation is —2.

Similar calculations for elements of each conjugacy class of the octa-
hedral group give the remaining characters and allow us to identify the
irreducible content of this representation as 2A4; © 2E & 2F) & 2F,.

To determine which of these irreducible representations correspond to
true vibrations we need to remove those corresponding to zero modes. To
find the zero mode representation associated with isospin rotations of the
Skyrme field, we consider the infinitesimal SU(2) Mobius deformations

-~
i

(1+is)Ro(2) + €

RD(Z) = ——f’R{)(Z) + (1 — ig)

(9.130)
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where ¢ is real, and & complex. Under the transformations of the oc-
tahedral group a computation of the characters reveals that these vari-
ations transform as A; & E. Similarly, the variations which correspond
to translations and rotations transform under the octahedral group as
Fy @& F;. From the above 18-dimensional representation we therefore
remove A; & E @ Fy & Fy to obtain the representation of the true vi-
brations. This has the irreducible components A; & E @ 5 @ F3, and is
nine-dimensional. These irreducible representations are precisely the ones
obtained from the Fourier analysis of the field vibrations, given earlier.

As we saw, a number of scattering events through the symmetric min-
imal energy Skyrmions have a remarkable similarity to monopole scat-
terings. These monopole-like, Skyrmion scattering processes correspond
precisely to the extension of the low-lying vibrational modes (which we
refer to as monopole modes) to large amplitude, splitting the minimal
energy Skyrmion into clusters of lower charge. Each monopole mode cor-
responds to a different cluster decomposition and it is often possible to
identify the correspondence by comparing the symmetries of the scat-
tering process and the vibration mode. A more sophisticated approach
is to use the irreducible representation of each vibration mode to iden-
tifv the mode with an explicit rational map deformation. Via the Jarvis
correspondence between monopoles and rational maps, the extension of
this deformation to large parameter values determines a monopole con-
figuration with well separated clusters. The cluster decomposition of the
Skvrmion can thus be identified.

As an example, the one-dimensional A; mode in the vibrational spec-
trum of the B = 4 Skyrmion is represented by the 1-parameter family of
rational maps
_ {.:4 +2v3iz2 4+ 1
T - 2VBiz2 41

with ¢ close to 1. Extending ¢ to arbitrary positive values, and using the
Jarvis correspondence, we recognize this family of tetrahedrally symmet-
ric maps as describing the dynamics of four monopoles which approach
and separate on the vertices of dual tetrahedra and pass through the cubic
J-monopole. Therefore this vibrational mode, extended to large ampli-
tude, will separate the B = 4 Skyrmion into four single Skyrmions on the
vertices of a tetrahedron, which is one of the attractive channel scatterings
that we have already discussed. We denote this process by 1+1+1+1
to signify the charges of the clusters into which the Skyrmion separates.
The other B = 4 attractive channel scattering we have considered is the
Dy-symmetric scattering, which emerges as 2 + 2, that is, two B = 2
tori. This cluster decomposition corresponds to the two-dimensional vi-
brational representation E. The two remaining three-dimensional repre-

R(2)

(9.131)
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sentations correspond to the cluster decompositions 3+ 1, in which a sjy.
gle Skyrmion collides with the tetrahedral B = 3 Skyrmion preserving
cyclic C3 symmetry throughout, and the final decomposition is 2+1+1,
which is a Dag twisted line scattering in which two single Skyrmions col-
lide symmetrically with a B = 2 torus. All these scattering processes have
been computed using full field simulations, verifying the above picture.

The Jarvis rational maps of degree B have 43 + 2 parameters. For
general B one therefore expects the minimal energy Skyrmion to have
4B — 7 monopole vibrational modes below the breather, where the nine
zero modes describing translations, rotations and isospin rotations have
been subtracted off. As another example, for the B = 3 tetrahedral
Skyrmion. there are five monopole modes, and a rational map symmetry
analysis [193] suggests that they form an irreducible doublet and triplet
of the tetrahedral group. The two distinet modes correspond to the two
possible cluster decompositions, 2 4+ 1 and 14+ 1+ 1, and the correspond-
ing processes are the Cs-symmetric and Dyg twisted line scatterings as
seen for monopoles in Chapter 8. The Skyrmion collision for the first of
these has already been described earlier in this section and the twisted
line scattering is described in ref. [10]. For B = 2. the monopole mode
separates the two Skyrmions and the corresponding collision process is
right-angle scattering.

In summary, we see that there is a strong correlation between the low-
lving vibrational modes of a Skyrmion and the zero modes of the asso-
ciated monopole. An analysis of rational maps clarifies the correlation.
Furthermore, an extension of these modes to large amplitude shows a
correspondence between monopole dynamics. studied within the geodesic
approximation. and attractive channel Skyrmion scattering. which has
been confirmed using full field simulations. These results suggest that
a (4B + 2)-dimensional moduli space of Skyrme fields, which includes
the nine exact zero modes of a general Skyrmion, may model low energy
Skyrmion dynamics. However, no precise construction of a suitable maui-
fold of Skyrme fields directly from rational maps, or from monopole fields.
has yet been achieved.

9.9 Generalizations of the Skyrme model

In arriving at the Skyrme model as a low energy effective theory from
QCD in the limit in which the number of colours, N, is large, one finds
that the Skyrme field takes values in SU(Ny), where Ap is the number
of flavours of light quarks. So far we have only considered the case of
Nt = 2, which is physically the most relevant since the up and down
quarks are almost massless, and the SU(2) flavour symmetry between up
and down quarks is only weakly broken in nature: but the model with
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§U/(3) flavour symmetry, to allow for the strange quark, with appropriate
additional symmetry breaking terms to take account of the higher strange
(quark mass, is also a reasonable approximation and allows the possibility
to study strange baryons and nuclei within the Skyrme model, and also
scattering processes involving ordinary baryons and strange mesons. The
hasic fields {of the linearized model) now describe pions, kaons, and the
eta meson. There is still just one topological charge, identified as baryon
pumber, arising from the homotopy group #3(SU(3)) = Z. In the ab-
sence of any symmetry breaking mass terms, the three flavour Skyrme
Lagrangian is given by the usual expression (9.2), but with U € SU (3).
There is also a Wess-Zumino term, which we discuss below, but this only
plays a role in the quantization of Skyrmions and can be ignored for the
present discussion of classical solutions.

Obviously, solutions of the SU(3) model can be obtained by a sim-
ple embedding of SU(2) Skyrmions, and current evidence suggests that
these are the minimal energy solutions at each charge. However, there
are also solutions which do not correspond to SU(2) embeddings. and
although they have energies which are slightly higlier than the embedded
Skyvrmions, they are still low energy configurations, and they have sym-
metries that are very different from the SU(2) solutions and so may be
of some interest.

An example of a non-embedded solution is the dibaryon of Balachan-
dran et al. [30], which is a spherically symmetric solution with B = 2.
Explicitly, the Skyrme field is given by

U(x) = exp {if;(r)A “X 4+ iffr) ((A - %)? - %13)} . (9.132)
where A is a triplet of su(3) matrices generating so(3) and fi, fo are real
profile functions satisfying the boundary conditions fi(0) = f2(0) = =
and fi(sc) = fo(5c) = 0. Substituting this ansatz into the static Skyrme
equation leads to two coupled ordinary differential equations for f; and
f2. Solving these numerically vields an energy per baryon of E/B = 1.19.
which is about 1% higher than the energy of the embedded SU(2) torus
of charge 2.

Recently, an extension of the rational map ansatz has been proposed
1206]. to create SU(Ny) Skyrme fields from rational maps of the Riemann
sphiere into CPV~!. Explicitly, the ansatz extends the SU(2) projector
form (9.56) to

' 2
UV =exp (1f (‘?.P - ;\—:1,\})) . (9.133)
Ny

where P is now an Nf x Ny Hermitian projector, const ructed from a vector
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v with Ny components via

2 vl
VvV
P=—FI|T', (9.134)

and f(r) is a real radial profile function with the usual boundary con-
ditions. The vector v(z) : §% — CPV~! appears to be a rational map
from the Riemann sphere into C, but it is only defined projectively due
to the relation (9.134). In fact, we can use this projective property to
take v to be a vector in which all components are polynomials in z, and
the degree of this projector, which is equal to the baryon number of the
resulting Skyrme field. is given by the highest degree of the component
polynomials. When Ny = 2 this ansatz coincides with the usual SU (2)
ansatz after the identification v = (q,p)t, where R = p/q is the usual
rational map and we have made use of the equivalence CP' &~ §2,

Although there are some difficulties with this ansatz [394]. it can be
used to produce some low energy field configurations and to understand
the existence of certain symmetric Skyrme fields, which do not exist at
the same charge in the SU(2) model.

The SU(Np) Skyrme model has a global SU(N¢)/Zx, symmetry corre-
sponding to the conjugation U — QUO', where @ € SU(Ny). In terms
of the ansatz (9.133) this symmetry is represented by the target space
transformation

v Ov, (9.135)

The identification of K-symmetric maps (and hence K-symmetric Skyrme
fields) is analogous to the SU(2) case. The set of target space rotations
accompanying spatial rotations needs to form an Ne-dimensional repre
sentation of K, so the simplest situation in which a degree B symmetric
map exists is when
B+1llg =Xy &, (9.136)

where B 4+ 1|y is the restriction of the (B + 1)-dimensional irreducible
representation of SU(2) to the subgroup K, and Xn, denotes any Ny-
dimensional irreducible representation of A'. In this case a basis for Ay,
consists of Ny polynomials in = of degree B, which can be taken to be the
Nt components of the vector v.

To illustrate these ideas let us consider B = 6 Skyrme fields with icosa-
hedral symmetry in the SU(3) model. The relevant decomposition is

iy =FRa&G. (9.137)

The presence of the three-dimensional Fy shows that there is an icosahe-
drally symmetric degree 6 map from CP' into CP?. Explicitly, this map
is given by

v(z) = (2% + 3z, 1 = 32%, V502%)t (9.138)
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and is Yj-symmetric. Thus there is an icosahedrally symmetric B =
6 Skyrme field in the SU(3) model, whereas, as we have seen earlier,
the lowest charge for which there is an icosahedrally symmetric SU(2)
Skyrmion is B = 7.

Substituting the ansatz (9.133) into the Skyrme Lagrangian leads to
an energy function on the space of rational maps into CP¥~!, and an
essentially independent energy function for the profile function. In the
case of Ny = 3 and B = 6 a numerical search for the minimizing map
produces the map above [206], suggesting that the minimal energy non-
embedded SU(3) Skyrmion of charge 6 may be Yj,-symmetric. The profile
function is also easily determined numerically. Numerical investigations
of the full SU(3) Skyrme model need to be performed to find the precise
solutions of lowest energy, but this has yet to be done.

We now turn to a different generalization, the Skyrme model on a 3-
sphere, in which the domain R? is replaced by S}f. the 3-sphere of radius
L. but the Skyrme field is still a map to the target space SU(2). The
baryon number is the degree of UU. This generalization has been studied
in ref. [291], and in a more geometrical context in ref. [282], where it
was also shown that the geometrical strain formulation discussed earlier
can be used to define a Skyrme energy functional for a map between any
three-dimensional Riemannian manifolds. By taking the limit L — oc the
Euclidean model is recovered. but it is possible to gain some additional
understanding of Skyrmions by first considering finite values of L.

Let p. 2 be coordinates on 57, with y the polar angle (the co-latitude)
and z the Riemann sphere coordinate on the 2-sphere at polar angle ju.
Take f.R to be similar coordinates on the unit 3-sphere 57, which we
identify with the target manifold SU(2).

In general, a static field is given by functions f(u. 2,2) and R{u, z, Z),
but various simplifications are possible. To find the B = 1 Skyrmion we
consider an analogue of the hedgehog field, an SO(3)-symmetric map of
the form

f=fu). R=z, (9.139)
whose energy is

. 9 cin? 002 sin?
. _1_/ Lsing“(faJr -§u; f) 4 sin f(bfni)f_szrz) dye.
37 Jo s p L S H
(9.140)

Among these maps there is the 1-parameter family of degree 1 conformal
maps

S e, B
tan g =€ tan 7, (9.141)

where a is a real constant. These may be pictured as a stereographic
projection from S to R3, followed by a rescaling by €, and then an in-
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verse stereographic projection from R? to §7. Substituting the expression
(9.141) into the energy (9.140), and performing the integral gives

_ L + cosha (9.142)
" 1+ cosha 2L i
If a« = 0 then (9.141) is the identity map with energy
1 1
E=- L+--). 9.113
2( L (9.143)
Note that if L = 1 then E = 1, so the Faddeev-Bogomolny bound is
attained. We can therefore be certain that, in this case. the B = 1

Skyrmion is given by the identity map. We mentioned earlier that the
bound could only be attained by a mapping which is an isometry, and
this occurs when L = 1, the domain then being isometric to the target
space.
Computing a to minimize the energy (9.142), for a fixed. general value
of L. results in
cosha = V2L - 1. (9.144)

For L < v/2 this is clearly unattainable, and in fact the minimum occurs
at a = 0. This shows that, for L < /2, the identity map is stable with
respect to conformal transformations, though actually a stronger result.
that the identity map is stable against any deformation for L < /2. is
true [282]. The identity map is thus very likely the Skyrmion. The energy
density of the identity map is distributed evenly over the 3-sphere, so no
point of either the domain or target spheres is singled out as special.
The unbroken symmetry group is the diagonal SO(4) subgroup of the
full svmmetry group, which may be interpreted either as spatial or chiral
SO{4) rotations.

For L > /2 there are two roots of equation (9.144), related by the
symmetry a — —a, but they give geometrically equivalent solutions since
this sign change can be undone by making the replacement p — 7 — .
which exchanges poles on S}. The energy is

5 .
E=V2- 5 (9.145)

which is clearly less than (9.143). If a is positive. there is a preferred
point in S}, which corresponds to the point at infinity in R3, where the
energy density is minimal, and the image of this point is a preferred point
in S}. The unbroken symmetry is therefore SO(3) isospin symmetry. as
in the Euclidean case, and chiral symmetry is broken. The energy densitv
is maximal at the antipodal point. These conformal maps are not the
exact Skyrmion solutions for L > /2, but they are expected to be close.
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and have the same symmetry. In the Euclidean limit L — oo the radial
variable should be identified as the combination r = Ly, in which case the
expression for the energy (9.140) reproduces the result for the hedgehog
profile function (9.22). In the limit, the conformal map with e* ~ /8L,
that is. f(r) = 2tan~!(v/2r), has energy E = v/2, which is higher than
the value E = 1.232 of the minimizing hedgehog profile function, but the
Skyrme field is qualitatively similar.

In summary, we see that on a small 3-sphere the energy density of a B =
1 Skyrmion is uniformly distributed over SE and the unbroken symmetry
group is SO(4), but as the radius of the 3-sphere is increased beyond the
critical value L = +/2 there is a bifurcation to a Skyrmion localized around
a poiut and chiral symmetry is broken. Thus a phase transition occurs,
as in the Skyrme crystal, when one moves from conditions of high to low
barvon density, with a corresponding breaking of chiral symmetry. This
may have relevance to the physical issue of whether quark confinement
occurs at the same time as chiral symmetry breaking as very dense quark
matter becomes less dense.

For charge B > 1 the rational map ansatz can again be applied to
produce low energy Skyrme fields which approximate the minimal energy
Skyrmions on S; {246], by taking R(z) to be a degree B rational map and
f(p) the associated energy minimizing profile function. This produces
fields which tend to those of the Euclidean model as L — ¢ and for all
cases except B = 2, this ansatz produces the lowest energy configurations
vet discovered. The energy is particularly low if one chooses the optimal
value of L, which depends on B. For B = 2 an exact solution is known
219] which has lower energy than the O(2) symmetric field obtained from
the rational map ansatz with R = =2. This solution has a doubly axially
syminetric form with the larger symmetry O{2) x O(2), a subgroup of the
O(4) symmetry group of the 3-sphere Skyrme model that is lost in the
Euclidean limit.

Finally, in introducing the Skyrme model in Section 9.1 we already
mentioned that a possible modification of the model is the addition of the
pion mass term (9.7). The qualitative results of our previous discussions
are unchanged by its inclusion, but here we briefly mention the small
quantitative differences it generates. The most important effect is that
the Skyrmion becomes exponentially localized, in contrast to the algebraic
asvmptotic behaviour of the Skyrme field in the massless pion model. This
is because the modified equation for the hedgehog profile function,

a2
(r? + 25in? f) " + 20 f' + sin 2f ( 21— ““:‘2 ) —m2rlsinf =0,
(9.146)
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has the asymptotic Yukawa-type solution

flr) ~ é—e‘"‘”. (9.147)
Clearly the energy of a single Skyrmion with m, > 0 will be slightly
higher than with m, = 0, because the pion mass term is positive for all
fields. For higher charge Skyrmions, the rational map approach works as
before, but the profile function will again be slightly modified, leading to
slightly higher energies.

9.10 Quantization of Skyrmions

Quantization is a vital issue for Skyrmions, more so than for the other
solitons we have discussed, because Skyrmions are supposed to model
physical baryons and nuclei, and a single baryon is a spin half fermion.
\We consider here both the SU(2) and SU(N;) Skyrme models in R®.

We first briefly discuss the Wess-Zumino term [424], which is an ad-
ditional contribution to the action of the SU(N;) Skyrme model given
by

Swz = — l“\c‘ [E“"thr(RﬂR,,RQRHR',) &z, {9.148)
21072 ‘
where the integration is performed over a five-dimensional region whose
boundary is four-dimensional space-time. The Wess-Zumino term does
not contribute to the classical energy, but it plays an important role in
the quantum theory. Its introduction breaks the time reversal and parity
symmetries of the model down to the combined symmetry operation

trs —t, X+ -x, U~ U, (9.149)

which appears to be realized in nature, unlike these individual symmetry
operations. A topological argument shows that N. must be an integer.
and Witten [428] argued that it should be identified with the number of
quark colours. based on considerations of flavour anomalies in the quark
and Skyrme models.

To determine whether a Skyrmion should be quantized as a fermion
we can compare the amplitudes for the processes in which a Skyrmion
remains at rest for some long time T, and in which the Skyrmion it
slowly rotated through an angle 27 during this time. The sigma model
and Skyrme terms in the action do not distinguish between these two
processes, since they involve two or more time derivatives, but the Wess
Zumino term is only linear in time derivatives and so can distinguish them.
In fact it results in the amplitudes for these two processes differing by 2
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factor (—1)™e, which shows that the Skyrmion should be quantized as a
fermion when N. is odd, and in particular, in the physical case N, =
[428).

For Ny = 2 the above analysis does not apply, since the Wess-Zumino
term vanishes for an SU(2)-valued field. To determine the appropriate
quantization of an SU(2) Skyrmion one may follow the approach of Finkel-
stein and Rubinstein [132], who showed that it is possible to quantize a
soliton as a fermion by lifting the classical configuration space to its simply
connected covering space. In the SU(2) Skyrme model, this is a double
cover for any value of B. To treat a single soliton as a fermion, states
should be multiplied by a factor of —1 when acted upon by any operation
corresponding to a circuit around a non-contractable loop in the config-
uration space. Equivalently, the wavefunction has opposite signs on the
two points of the covering space that cover one point in the configura-
tion space. These authors also showed that the exchange of two B =1
Skvrmions is a loop which is homotopic to a 27 rotation of a Skyrmion,
in agreement with the spin-statistics result. It was verified by Williams
[426] that a 27 rotation of a single Skyrmion is a non-contractible loop,
thus requiring the Skyrmion to be quantized as a fermion. This result was
generalized by Giulini {154}, who showed that a 27 rotation of a charge
B Skyrmion is a non-contractible loop if B is odd and contractible if B
is even.

A practical, approximate quantum theory of Skyrmions is achieved by
a rigid body quantization of the spin and isospin rotations. Vibrational
modes whose excited states usually have considerably higher energy are
ignored. For the B = 1 Skyrmion, this quantization was carried out
by Adkins, Nappi and Witten [7], who showed that the lowest energy
states (compatible with the Finkelstein-Rubinstein constraints) have spin
half and isospin half, and may be identified with states of a proton or
neutron.

The quantization of the B = 2 Skyrmion was first discussed by Braaten
and Carson [64], using a rigid body quantization. Their analysis was ex-
tended by Leese, Manton and Schroers [261], who also allowed the toroidal
Skvrmion to break up in the direction of the lowest vibrational mode,
which corresponds to the attractive channel. Both calculations find that
the lowest energy quantum state has isospin zero and spin 1, as expected
for the deuteron. The second calculation gets closer to the usual physical
picture of the deuteron as a rather loose proton-neutron bound state.

For higher charge Skyrmions symmetric under a discrete group K, the
moduli space of zero modes is (SO(3) x SO(3))/K, where in this case
K really denotes the group and not its double cover. K can be replaced
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by its double cover, K”, if the SO(3) factors in the above quotient spuce
are promoted to SU(2). A quantization of the zero modes can be per-
formed by quantizing on this quotient space, but there are a number of
inequivalent ways to do this labelled by the irreducible representations of
K’. It is most convenient to define the wavefunctions on SU(2) x SU(2),
and require them to be eigenstates of the operations corresponding to the
elements of A’. The Finkelstein-Rubinstein constraints are imposed by
requiring the eigenvalues to be +1 depending on whether the particular
element of K’ corresponds to a contractible or non-contractible loop. This
has been performed [64, 74, 411, 210] for charges B < 8, and gives the cor-
rect quantum numbers (spin, isospin and parity) for the experimentally
observed ground states of nuclei in all cases except B=5and B =7
A further study, making use of the topological properties of the space of
rational maps, has allowed an extension of this analysis up to B = 29
[247]. The fact that some results do not agree with the experimental data
is probably due to the restricted zero mode quantization, which does not
allow any vibrational or deformation modes, and assumes a rigid rotor
approximation so that the symmetry of the static solution is maintained
even in the presence of spin.

9.11 The Skyrme-Faddeev model

Some time ago, Faddeev [125] suggested that stable closed strings may ex-
ist as topological solitons in a modified O(3) sigma model which includes
a fourth order derivative term, with the topology arising due to the twist-
ing of a planar soliton along the length of the string. Each slice normal
to the string carries the localized planar soliton. The Skyrme-Faddeev
model, which realizes this idea. involves a map n : R? — 52, and can be
obtained from the Skyrme model simply by restricting the field values to
an equatorial 2-sphere of the usual SU(2) target space. Explicitly, the
field of the model is a real three-component vector n = (n1,n2.n3), with
unit length. n-n = 1. The associated restricted Skyrme ficld is U = in 1.
Substituting this into the Skyrme Lagrangian (9.2) results in

L= /{c’)ﬂn -d'n — %(0,,11 x dyn) - ("n x b‘"n)} dr, {9.150}

which is the Skyrme-Faddeev Lagrangian. Its first term is that of the
O(3) sigma model and the higher order derivative Skyrme term is, as
usual, required to give the possibility of configurations which are stable
under a spatial rescaling.

In order for a field configuration to have finite energy the vector n
must tend to a constant value at spatial infinity, which we may take to



9.11 The Skyrme-Faddeev model 409

be the vector n® = (0,0, 1). Finite energy field configurations have a
topological classification, but the novel aspect of this model is that the
topological charge is not a topological degree, as it is for the solitons
we have considered so far in this book, such as vortices, monopoles or
Skyrmions.

The boundary condition again compactifies space to §3, so that at any
given time the field is a map n : 3 — 52, Since 73(52) = Z, there is
an associated integer topological charge N, the Hopf charge, which gives
the soliton number. This charge can not be the degree of the mapping,
since the domain and target spaces have different dimensions. Instead,
one definition is the following. Let « denote the area 2-form on the target
5? and let f = n*w be its pull-back under n to the domain S3. Since w is
closed, f is closed. Then, due to the triviality of the second cohomology
group of the 3-sphere, H?(S3) = 0. this pull-back must be an exact 2-
form, say f = da. The Hopf charge is constructed by integrating the
Chern-Simons 3-form over S3,

1
N::r_r2 Saf/\a, (9.151)
This integral is independent of the choice of a, because if a — a + da,
then the change of N is

1
AN = ﬁf /b S Ada= fs (d(fa) - (dNa)=0  (9.152)
because df = 0. and by Stokes™ theorem the integral of d(fa) vanishes
over a closed 3-manifold.

An important point to note is that the Hopf charge can not be written
as the integral of any density which is local in the field n. For this reason
it is useful to consider an alternative interpretation of N. Generically. the
preimage of a point on the target 52 is a closed loop in §3. Now if a field
has Hopf number N then the two loops consisting of the preimages of
any two distinct points on the target S? will be linked exactly N times.
In Fig. 9.12 we schematically represent the preimages of two points for a
configuration with N = 1.

Solitons have been found in the Skyrme-Faddeev model for a range of
values of N. They are string-like, but not all of a simple shape. Recall that
the position of a lump or Skyrmion is sometimes defined to be the point
in space at which the field takes the value antipodal to the vacuum value.
Here, the position of a soliton is the curve in space which is the preimage
of the vector —n>™ = (0,0, —1). Displaying this closed string is a useful
way to represent the solution. Alternatively, a thickened version of the
soliton may be represented by the preimage of the circle of vectors with
ny = const. The Skyrme-Faddeev model has a global O(3) symmetry, but
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Fig. 9.12. A sketch showing two loops corresponding to the preimages of two
points on the target 2-sphere. The loops are linked exactly once, indicating that
the configuration has Hopf charge N = 1.

the choice of a vacuum value n™ breaks this to an O(2) symmetry, which
rotates the (n;,ng) components. As usual. when we refer to a symmetry
of a configuration we mean that the effect of a spatial transformation can
be undone by acting with an element of the unbroken global symmetry
group of the theory, in this case O(2). This implies that both the ny
component (which determines the position of the soliton) and the energy
density are strictly invariant under the symmetry operation.

Not only is there a topological Hopf charge in this model, but there
is also a lower bound on the energy in terms of the charge N [105, 249
Explicitly,

E > [N} (9.153)

where ¢ = 16723%/8 =~ 238. This energy bound is rather unusual in that
fractional power of the topological charge occurs, reflecting the fact that
this bound is not obtained from the usual Bogomolny-type argument. but
relies on a sophisticated use of Sobolev inequalities for its derivation. As
such, the above value for the constant ¢ may not be very tight. We will
comment further on this shortly.

As pointed out in ref. [405], spherically symmetric fields automatically
have zero Hopf charge, so it is not immediately obvious how to writc
down even the simplest field configurations which have non-zero values
of N. However, a toroidal ficld can be constructed for any N, based on
Faddeev’s original idea. One may think of this field as a two-dimensional
Baby Skyrmion which is embedded in the normal slice to a circle in space
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and has its internal phase rotated through an angle 27N as it travels
around the circle once. The construction can be implemented in toroidal
coordinates if the size of the circle is fixed in advance, and was the method
used in the numerical investigations {127, 155], which established the ex-
istence of axially symmetric solitons with charges N = 1 and N = 2,
but it is rather cumbersome. A more elegant approach to constructing
field configurations with non-zero Hopf charge makes use of the observa-
tion [302] that a field with Hopf charge N can be obtained by applying
the standard Hopf projection H : §% s S? to a map U between 3-spheres
with winding number N - in other words, a Skyrme field. Precisely, let
U(x) be a Skyrme field, that is, any smooth map from R? into SU(2)
which satisfies the boundary condition that U tends to the identity as
[x| — oc. Let U have baryon number (degree) B. By writing the matrix
entries of U in terms of complex numbers Z; and Z; as

Zy -7,
U= - , 9.154
( ZT 2y ) ' ( 2 )

where | Zy|? + |Z1|? = 1, the image of the Hopf map H can be written in
terms of the column vector Z = (Zy. 2 1)t as

n=2r2. (9.155)

It is easy to see that n is a real 3-vector of unit length and satisfies
the boundary condition n{>) = n*. Furthermore, it can be shown that
the Hopf charge of the configuration constructed in this way is equal to
the baryon number of the Skyrme field U, that is, N = B.

A useful supply of Skyrme fields for this purpose can be obtained using
the rational map ansatz, as described in Section 9.5. Recall that this
involves a rational map R(z) and profile function f(r). In particular,
choosing the map R(z) = z gives an axially symmetric field n of Hopf
charge N, which has the same qualitative properties as those constructed
by hand using toroidal coordinates. Note that in the case N = 1 the
Skyrme field is spherically symmetric, but the Hopf projection breaks
this, so that the vector n has only an axial symmetry. To determine
the position of any approximate soliton constructed using this method
we need to calculate the points in R? at which n = (0,0, —1). Equation
(9.155) shows that this is equivalent to finding where Zy = 0. In the
rational map ansatz, Zy = 0 if f(r) = %Tf and also |R(z)] = 1. For the
family of maps R = 2z the second condition gives |z| = 1, the equatorial
circle on the Riemann sphere. Therefore the position of the soliton is
a circle in the (x!,r?) plane, whose radius is determined by the first
condition.
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(a) (b)

13} {d)

Fig. 9.13. Isosurface plots for the N = 1 soliton displaying (a) the thickened
locus of the position, (b) the energv density. (¢) linking structure between two
independent points on the target 2-sphere, and {d) a comnparison between the
pusition and energy density. Notice that the linking number is indeed 1 and that
the energy density is not toroidal, but rather its maximum occurs at a point
inside the locus of the position.

Using these axially svinmetric configurations as initial data in a full
three-dimensional numerical relaxation [43], it is found that for N =1
and N = 2 the minimal energy soliton fields are very close to the initial
data. In Fig. 9.13 and Fig. 9.14 we present, for the N = 1 and N =2
solitons respectively, the position. the energy density, the linking number
(by plotting the preimages of the points n = (~1.0,0) and n = (0, -1.0)}.
and the position and energy density isosurface together for comparison.

The energy of the N = 1 soliton has been computed several times
[155, 43, 179, 419], using a variety of numerical schemes, and within the
accuracy of the numerical calculations it is E = 545. Note that this is more
than double the bound (9.153) with the quoted value of ¢, in agreement
with our earlier remark that this value is probably not optimal. Ward
[418] has argued (but it has not yet been proven) for the stronger value
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(a) {b)

{c) {d)

Fig. 9.14. The same quantities as in Fig. 9.13, but for the N = 2 soliton. Notice
that the locus of the position and the energy deusity are both toroidal, but that
the energy density is peaked inside the position.

¢ = 3272/2 = 447. This is better from the point of view of the N = 1
soliton. since its energy would then only exceed the bound by roughly 20%.
as would the energies of the higher charge solitons [43]. Ward’s value is
arrived at by considering the Skyrme-Faddeev model on S} rather than
®3. in analogy with the discussion of Skyrmions on a 3-sphere. As in the
Skvrme model, there is a special radius of the sphere. in this caset L = /2,
for which an exact solution can be obtained, which corresponds to the
identity map from S} to S followed by the standard Hopf projection.
The energy of this solution. which is possibly an absolute minimum for a
soliton of unit charge, is precisely the value of ¢ proposed by Ward. Thus
if the Skyrme-Faddeev model mimics the result in the Skyrme model.
where the topological energy bound is attained at the special radius. and
is otherwise exceeded. then this energy is a natural candidate for the
optimal constant ¢. Other aspects of the Skyrme model on a 3-sphere also

" The [act that the special radius is not L = 1 is simply due to our choice of coeflicients
in front of the two terms in the Lagrangian (9.150).
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find parallels in the Skyrme-Faddeev model. For example, the identity
map followed by the Hopf projection is an unstable solution if the radius
L exceeds a critical value, which in the normalization we have chosen is
L>2

Returning to solitons of the Skyrme-Faddeev model in flat space, for
N > 2 the results of the numerical relaxation show that the minimal
energy solution does not have the axially symmetric form described above.
For example, the position of the N = 3 soliton has the structure of a
twisted loop; this is displayed in the first plot of Fig. 9.15. Faddeev

Fig. 9.15.  The position of the soliton for (a) N =3, (b) N =6, (c}) N=1.

and Niemi [127] conjectured that the string-like solitons in this model
would form knotted configurations for large enough values of N. This was
verified numerically in ref. [43] (and later in ref. [179]) where both links
and knots were found as the minimal energy solutions at various Hopf
charges. The second and third plots of Fig. 9.15 show the position of the
soliton for N =6 and N = 7. The N = 7 soliton has the form of a trefoil
knot, while the N' = 6 soliton is composed of two linked loops which each
resemble the N = 2 soliton. The total Hopf charge is here N = 6 because
there is an additional two units of charge associated with the double
counting of the linking number of two preimages, when the preimage of a
single point itself has disconnected, linked components. The fact that the
linking number is not simply additive, as this example demonstrates, is
probably the physical reason why the energy bound (9.153) grows slowly.
as a fractional power of the Hopf charge N.

As with Skyrmions, it is expected that the configuration space of the
Skyrme-Faddeev model is very complicated, leading to many solutions
which are local energy minima but not global minima, in addition to
saddle point solutions. In fact, because of the string-like nature of the
solutions, it is very likely that the difficulties associated with finding the
global minimum at each charge will be much worse than in the Skyrme
model. It has already been demonstrated [419] that even the space of
N =2 field configurations has quite a complicated structure.

Further numerical and analytical studies are required to fully inves-
tigate the soliton solutions which are expected to exist for higher Hopf
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charge, and to determine whether more complicated knots and links arise
as the minimal energy solutions. There is physical motivation for this,
since it has been proposed that the Skyrme-Faddeev model arises as a
dual description of strongly coupled SU(2) Yang-Mills theory [128], with
the solitonic strings possibly representing glueballs.

Finally, we note that in the model with Lagrangian

L= /{(3,,11 x d,n) - (On x &n)}* d*r (9.156)

exact solutions describing axially symmetric Hopf solitons can be found
explicitly [12]. This rather strange model, involving a fractional power
in the Lagrangian density, is scale invariant. The solitons are therefore
similar to lumps in the O(3) sigma model. in that they have a zero mode
associated with changes in the scale of the soliton, which might lead to
soliton collapse in a finite time in dynamical situations.



