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The rotational excitation of molecules

4.1 Introduction
The quantum theory of molecular collisions has been extensively developed over the

last three decades. As in many branches of theoretical science. the growth of this subject has
been closely linked with the advances in computer technology. Powerful numerical techniques
have been developed for solving Schrodinger’s equation, which are well adapted to low
energy, molecular collision problems, at various levels of approximation. A basic reference
text in this context is Atomic. Molecular and Optical Physics Handbook [43]. The complexity
of the problems that can be tackled, and the accuracy of the results that can be obtained,
continue to be determined by the available computing power.

Any proper discussion of molecular collision processes involves the concept of the potential
energy curve or surface. This concept drives from the Born—-Oppenheimer approximation, to
which we first turn.

4.2  The Born—Oppenheimer approximation

For the sake of simplicity. when discussing the basic concepts. we consider the
collision between a one-electron atom, A. and a fully-stripped ion. B. The theory which
pertains to this illustrative case can be generalized to collisions between many-electron atoms
or to collistons between molecules.

When studying a collision problem, we are interested in the relative motions of the particles
involved, and not in the motion of the centre of mass (barvcentre) of the colliding system. The
velocity of the centre of mass remains constant and is irrelevant to the scattering processes
to which we progress below. The position of the centre of mass, relative to a space-fixed or
laboratory reference frame, will be denoted by R¢ and the coordinates of the centre of mass
of A and of B by Ra and Rp, respectively. R is the vector connecting the centre of mass of A
to B and is taken to be directed from A to B: see Fig. 4.1. The position of the centre of mass
of the system is defined such that

R = Rac + Rcs

m m
= "8 R4+_"2 R (4.1)
ma + mp ma + mp
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A

O B

Figure 4.1 Defining the space-fixed or laboratory coordinates of an atom, A, and a
fully-stripped ion, B. and of their centre of mass, C: the relative coordinate, R, is directed
from A to B.

and the momentum of the system is
mARA + mBRB
= ma(Rc — Rac) + ms(Re + Res)
= (ma + mp)Rc (4.2)

where use has been made of equation (4.1). Thus, the momentum of the system may be
considered as being due to the total mass, (ma + mg), located at the centre of mass.
Consider now the kinetic energy of the system,

IO

1. r .
= EmA(RC —Rac)? + 5 mg(Rc + Rcp)”

= % (ma + mp)RE + % uR? 4.3)
where u =mamg/(ma + mg) is the reduced mass of the system. Thus, the kinetic energy
comprises contributions from the total mass, moving with the velocity of the centre of mass,
Rc. and from the reduced mass, moving with the relative velocity, R, of A and B. When the
system is isolated, as we assume, the velocity of the centre of mass is constant and may be
removed by a change of inertial frame; there remains the relative kinetic energy, which is
available for exciting the internal degrees of freedom of the colliding system. Thus, we may
consider the atom A to move with reduced mass, i, relative to a fixed centre of force, B.

When discussing the interactions between atoms and molecules, it is often convenient to
use the atomic system of units, in which e =m. = h = 1. In these units, the hamiltonian of
the system AB may be written

2
H(x,R) = Ha(x.R) — % +V(x.R) (4.4)
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where x is the position vector of the electron with respect to the centre of mass of A and B,
H A (x, R) represents the electronic hamiltonian of the atom A and V (x, R) is the potential of
interaction between A and B; — vf? /(2u) is the relative kinetic energy operator, and v~ the

Laplacian operator ( v,2e = (de:‘ + 5"7; + %) Our task is to solve the Schrodinger equation

HY = EV (4.5)
where E is the total barycentric energy of the colliding system, which is the kinetic energy
of relative motion of A and B at infinite separation. The wave function is ¥ = W (x, R).

Letus write the wave function in the following form, which retains generality but hints at the
separation of the dependences on the electronic coordinates, x, and the relative coordinates, R:

W(x,R) = Y Fi(R)$;(x.R) (4.6)

For fixed R, equation (4.6) is an expansion of the wave function in terms of the solutions of
the wave equation

[Ha(x.R) + V(x.R)]¢i(x,R) = E;(R)¢i(x,R) (4.7)

which form an orthonormal (orthogonal and normalized) set of functions, such that

(@jloi) = /d’;(X.RW):‘(X-R)dX = Jjj (4.8)

where §;; is the Kronecker delta symbol (§;; = 1 if i =j. §;; =0 if i # j). Substituting (4.6) in
the Schrodinger equation (4.5) and projecting out ¢; by operating with [ dx (pjf‘(x. R) on both
sides of the equation. we obtain

2u

-

[— YR | E(R) - E} F;(R)

(4.9)

-y (@1 VRIS)-TRFi(R) (@] Vg 1¢)Fi(R)
- u 2u

Were it not for the terms on the right-hand side of equation (4.9), we would have succeeded
in separating Schrodinger’s equation into (4.7) for the electronic motion at a given value of
R. and (4.9) for the relative motion on a given electronic potential energy surface. E;j(R).

The approximation of neglecting the coupling between the electronic and relative motions,
embodied in the terms on the right-hand side of (4.9). is known as the ‘adiabatic’ or
Born-Oppenheimer approximation. These terms give rise to transitions between potential
energy curves, are responsible for charge transfer processes (Chapter 8). and can be
responsible for fine structure transitions in atoms and ions (Chapter 6). induced in collisions
with other atomic or molecular species. In the discussion of rotational excitation processes
which follows, the collision will be assumed to take place along a single adiabatic potential
energy curve.



52 The rotational excitation of molecules

4.3  The scattering of an atom by a rigid rotator

The theory of the scattering of a structureless particle by a rigid rotator (rotor) was
given its first quantum mechanical formulation by Arthurs and Dalgarno {44]. Their approach
1s applicable to collisions between any particle without internal structure, or whose internal
structure may be neglected, and a two-particle system possessing internal angular momentum.
The degrees of freedom of such a system may be defined by the three polar coordinates of
the atom A in a coordinate system whose origin is at the centre of mass M of the rotor BC
and which is fixed in space, together with the two polar angles defining the orientation of
BC in this same coordinate frame. The atom may be considered to move with reduced mass
u =ma(mg + mc)/(ma + mg + mc) relative to the centre of mass of the rotor.

An alternative approach [45] is to define the polar angles of BC relative to a coordinate
system in which the Z-axis coincides with MA and rotates in space in the course of the
collision. This ‘body-fixed' frame of reference is the more natural choice from the viewpoint
of the interaction potential, which depends on R and 8’ only: see Fig. 4.2. However, as B and
C are now moving relative to a coordinate system which is itself rotating. Coriolis forces
arise, in addition to centrifugal forces. We shall consider the relative merits of these two
coordinate frames in the discussion below.

An interesting analogy may be drawn between atom-rigid rotor scattering, as formulated
by Arthurs and Dalgarno [44], and e™-H scattering, as formulated by Percival and Seaton
[46] and considered in Chapter 9. If electron exchange is neglected, the two problems become
formally very similar. Indeed. as we shall see below, the algebraic coefficients that arise in
the quantum mechanical treatment of atom-rigid rotor scattering are identical to coefficients
tabulated by Percival and Seaton.

Let us denote by (©®, ®) the orientation of the body-fixed (BF) Z-axis relative to the
space-fixed (SF) frame, xyvz. The polar coordinates of particle A in the SF frame are then

>N

—» X

Figure 4.2 Defining the space-fixed coordinate system xyz and the body-fixed Z-axis
for the collision between an atom A and a rigid rotor BC, whose centre of mass is M; R
and 6’ are sometimes called ‘Jacobi coordinates’.
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(R, ©, ®@). As noted above, the polar angles of BC may be expressed relative to either the SF
or the BF frame. Let us denote these angles (6, ¢) and (6', ¢'), respectively.

Calculations are facilitated by expressing the wave function of the rotor in terms of a
complete set of orthonormal functions of the polar angles (6, ¢) or (', ¢"). The normalized
spherical harmonics, Y, form such a set of functions. Denoting the angular momentum
quantum number of the rotor by j and its projection on the SF z-axis by m, we have that

rOh—

Q2j+ D —m)! .
Yim(0,¢) = (=1)™ P (cos 8)e'™?, 4.1
im(0,¢) = (—1) [ anll )] ] " (cos B)e (m > 0) (4.10)
with
Yj—m(0.8) = (=1)"Y7,(6,0) (4.11)

and where P;" (cos 6) is an associated Legendre polynomial [47]. In the BF coordinate system.
the corresponding set of functions is Yjo(6'.¢'), where Q is the projection of j, the angular
momentum of the rotor, on the BF Z-axis. In order to establish the relationship between
Yim(6,¢) and Y;o(8'.¢'). it is necessary to introduce the concepts of the Euler angles and
the rotation matrix, D.

The Euler angles (a, B, y) define a sequence of three rotations, successively through o
about the z-axis, through B about the new y-axis, and through y about the new Z-axis. which
takes the SF coordinate system into the BF system. The rotations are taken in the positive
sense, that is, in the sense of inserting a right-handed screw. In the example that we are
considering, it may be verified that the Euler angles are = ®, 8 =0, and y is arbitrary,
usually taken to be zero. The elements of the rotation matrix, D, are defined by Rose [48]
and Brink and Satchler {49] as

D/m,m(a,ﬁ. y) = (jm'|e iUz e Bl e T1Viz i) (4.12)
where |jm) =Y;,(6, ) and j.. j, are components of the angular momentum operator in the
SF system, where

et i =§ (4.13)

Using the quantum theory of angular momentum, (4.12) may be written

D (@.fB.y)=e""ed (e ™ (4.14)

m

where

& (B) = (il jm) (4.15)
Explicit expressions for d{n,m(ﬂ) are given by Rose [48] and Brink and Satchler [49]. In
another standard text on angular momentum theory, Edmonds [50] defines a rotation matrix
D whose elements relate to Rose and Brink and Satchler through

D@ B.y) =D, (a.B,y) (4.16)

m
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Thus. D is the transposed complex conjugate of D. Either of these conventions may be
adopted but must be adhered to. We shall adopt the definition (4.12) of Rose and Brink and
Satchler, in which case

Yim(6.0) =Y Dhio(®.0,0)Y0(6’.¢) @.17)
Q

and the inverse relation

Yia'.¢)) =Y Do(®.0.0)Yn(6.¢) (4.18)

apply. The functions (4.17) are eigenfunctions of j° and j., with eigenvalues j(j + 1) and m,
respectively, whereas the functions (4.18) are eigenfunctions of j° and j7, with eigenvalues
jG+ 1) and Q.

Conservation laws are at the heart of physics, and it is advantageous, when solving a
dynamical problem, to make use of the fact that the total angular momentum is conserved. This
symmetry property arises from the invariance of the hamiltonian describing the dynamical
system under rotations of the system in space. Put in other words, the orientation of the SF
coordinate system may be chosen arbitrarily. In the problem under consideration, the total
angular momentum, J, is composed of the angular momentum of the rotor, j, and the angular
momentum of the atom relative to the rotor, I

J=j+1
J.=j: + L

Eigenfunctions of j? and j. have already been given as Yim(6. ¢). Similarly, the eigenfunctions
of 12 and [. are Yim, (©., ®), with eigenvalues I(/ + 1) and m,, respectively. It follows that the
product Y, (6. ¢) Y, (®, @) isan eigenfunction of j>,j-. 12 and I, butitis noran eigenfunction
of the total angular momentum operators J> or J.. However, such functions are readily
formed as

Vim 0.6:0.0) =Y Chr 1 Yim(6.0)Yim, (O, D) (4.19)

mmy;

where M =m + m; and C{:r,n/ y 18a Clebsch—Gordan coefficient, which is related to the Wigner
3j-symbol through

jlJ
qnmlM

. 1 ]
=(—1V*+M(21+1)?( ; ’; _j; ) (4.20)

[51]. Using equation (4.17) and the following relationship between a spherical harmonic and
an element of the rotation matrix

(81

21+ 1
Yim (©, ®) = (—4”—) Df,tl()(d), ©,0) (4.21)
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the eigenfunctions (4.19) may be expressed as

]
2[+1\2 i ;o
Vium (6,40, ) = ( 7 ) > Crmu Yin(6'.¢)

T
MMI
Q
x Dy (9,.0.0)DY (4, ©,0) (4.22)

The Clebsch—Gordan series [48] tells us that

D}o(®.0.0)D, (($.0.0)= Y

1 ,
" mmM CJQOQD;'!Q((D- ©.0) (4.23)
7

and, as the Clebsch—Gordan coefficients are real, equation (4.22) becomes

I
, 20+ 1)2 TN TN TL
.)/jUM (0.9.0.P) = ( 47 ) Z Cmm,M Cmm/M CQOQ

mm

J'Q2

x Yjq(6'.¢' Dy (®.0.0) (4.24)

The Clebsch—~Gordan coefficients satisfy orthonormality relations [51]. one of which is

JUJ JlJ' _ "
Z Cmm,M Cmm[M' - 611’6MM' (4.25)

mm

and so equation (4.24) reduces to

[

, , 2041 jll _—
}jIJM (0.0.0.9) = (QJ T ) ; CQOQZ]'QJM 0.¢:.:0.0) (4.26)
where
|
I3 ! 2‘] + ] 5 * , ,
Ziom(0,¢.0,0) = ( in ) D,JWQ(CD.(-).O)Y,'Q(Q 0) 4.27)

is an eigenfunction of J° and Jz. Equation (4.26) specifies the unitary transformation which
relates the eigenfunctions of J° in the SF frame. Yium (6.¢:0, ®), to the corresponding
eigenfunctions in the BF frame. Zjqum (6. ¢"; ©. ®). An alternative and more compact way
of writing equation (4.26) is

JIIM ) = QUM ) (jQUM |jlIM ) (4.28)

with an implied summation over the index €2. and where

1
. . 204 1\2 .y
QUM |jlIM) = (ﬁ) Choo (4.29)

is seen to be independent of the projection quantum number. M =m + m;.
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Equation (4.26), or its alternative form, equation (4.28), is an important result, enabling
quantities evaluated in the rotating (BF) frame, which is more natural for expressing the
interaction between A and BC, to be transformed into the laboratory (SF) frame. in which
measurements are made. Note that, as the BF Z-axis is taken to be coincident with MA, the
projection of the orbital angular momentum 1 of A relative to BC on this axis is zero, as I is
perpendicular to MA. It follows that jz = Jz. These facts are embodied in the Clebsch—Gordan
coefficient. Cé'lz‘{)g‘ which appears in equation (4.29): the same projection quantum number,
€2, 1s associated with both j and J.

Another conservation law which may be used is associated with the parity of the
eigenfunctions representing the system A + BC. The corresponding symmetry operation is
the inversion of the coordinates of all particles (A, B and C) in the origin of the SF coordinate
frame. The hamiltonian is invariant under this operation; the corresponding operator, P, gives
rise to the following transformation of SF coordinates:

0 >nmn—-0,0p >n1+¢

O->17-0.P>1+

Under this same operation, the BF coordinates transform as
0 >6.¢ >m—¢

[52]. Carrying out these transformations of angles. we find that the eigenfunctions (4.19) of
J? and J. behave as

PYim(0.9:0.®) =YViym(t —0.1 + ¢;1 — Q.1 + D)
= (=Y Vum (6.4: 0, ) (4.30)

where use has been made of the properties of the spherical harmonics (4.10). Thus, Yjyu is
an eigenfunction not only of J* and J., with eigenvalues J(J + 1) and M, respectively, but
also of the inversion operator, P, with eigenvalue (— 1Y */. This latter eigenvalue is denoted
by the parity, p ==+ 1, of the wave function.

Regarding the eigenfunctions (4.27) of J? and Jz, the situation is somewhat more
complicated. In this case, we find that

PZiom(0'.¢":0,0) = Zigm('.n —¢'in — O, + d)
=(-1Z_am®'.¢:0,0) 4.31)

As €2 appears on the left-hand side, and —£2 on the right-hand side, of equation (4.31), it
follows that, while Z;jq;um is an eigenfunction of J2 and J,, with eigenvalues J(J + 1) and
€2, respectively, it is it not an eigenfunction of P. However, such eigenfunctions may readily
be formed as the linear combinations

M )

jell

(Ziaum +€2;

[2(1 + 859)]

Zicem = (4.32)

1L
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1

where = |2| and € =+ 1. The factor [2(1 + ‘SQO)] 2 ensures that the eigenfunctions are

correctly normalized for all possible values of €, i.e. for Q> 0. It may be seen from
equation (4.32) that, when 2=0, only e =+ 1 is allowed: the eigenfunction vanishes
when € = — 1. The functions Z;q, are eigenfunctions of the inversion operator, P, with
eigenvalue p’' = (—1)’ €. When € = (—1Y*+*/ that is, when p’ =p, Yjum and Z;g ;y are
related through

+ | —

221+ 1) U
M (0,90, ) = e
Yium (6. ¢ ) %[(]+5Q0)(2‘]+1)} 500
X Zigem (0'.¢": 0. ) (4.33)
In matrix notation, equation (4.33) becomes
UUM) = |jQeIM ) (jQeIM |jlIM ) (4.34)

with € = (= 1Y%/ and an implied summation over Q > 0. It follows from the properties of
the Clebsch—-Gordan coefficients [51] that, when Q =0, st'lz{)s'z = C{)I({O =Q0unlessj+/+J is
even: this implies that only € = (= 1Y ™'/ = 4 1 is allowed when Q = 0, a condition already
noted above.

A rotation of the coordinate system. from the SF to the BF frame, leaves the parity of
the wave function unchanged. As a consequence, equation (4.33) [or equivalently (4.34)] is
applicable only when p’ =p. With p' =p = (—1)’ ¢, equation (4.32) may be written in the
form

(Zam + ~17PZ; _am )

Ziqpim =

19—

[2(1 + 850)]
Similarly. as p = (—1Y*/, we may define
Yipim = Yjum

where the parity subscript is written explicitly. Either the SF functions Vjj,m (6. ¢. O, ®) or
the BF functions Z;¢ ;) (0',¢’: ®. ®) are suitable as a basis in which to expand the total
wave function, V.

) F(jlpJM |R) o a
W(E.R) = ‘Z ———— Yipm (F:R) (4.35)
jipIM
or
. G(jQpIM |R) )
V(E.R) = Y ———— Ziapum R (4.36)
jQpIM

where £ = (0, ). &' = (8'.¢'). R = (®, ®) and R = (R, ©, ®) denote polar coordinates.
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The Schrodinger equation (4.5) may be written

(H-E)W =0 (4.37)
where the hamiltonian is given by
j2 V2
H=>"_YR Ly 4.38
Ty + V( ) ( )

The first term on the right-hand side of equation (4.38) will be recognized as the rotational
energy of a rigid rotor. We recall that the rotational angular momentum of a rotor 1s j = [w.
where / is the moment of inertia and w is the angular velocity. The associated kinetic energy
is T=1w"/2=j"/(2I). The term V(R,6’) denotes the potential of interaction between A
and BC on a given potential energy surface and was written above [cf. equation (4.9)] as
E;(R). The energy of interaction between an atom A and a rigid rotor BC depends on the BF
coordinates R and #’ only: V is independent of ¢’ as the potential is invariant under rotations
of the internuclear axis BC sbout the BF Z-axis. For the purposes of the subsequent analysis,
V(R.6') is expanded over a complete set of functions of the angular variable. 6.

x
V(R.6') = Z v; (R)P; (cos8') (4.39)

A=0

where P; is the Legendre polynomial [47]. In practice, the summation in (4.39) is truncated
at a finite and sometimes small value of A.
The second term on the right-hand side of equation (4.38) represents the kinetic energy of
the relative motion of A and BC and may be separated into radial and angular parts:
1, 19° I’

_—vk:

~ R+ —— 4.40
2u 2uR 9RY " " 2uR? (4.40)

We recall that u =ma(mp+mc)/(ma +mpg+mc) 1s the reduced mass of the system
A + BC. Thus, equation (4.37) becomes

D ] )
J° 1 0- I ,
L R CAVRE)—E|w =0 4
[21 R Rt e TV ] (44D

with W given by equation (4.35) or equation (4.36). Recalling that
P Yipsm = 3G+ D Yjipsm
and
jZZjQpJM =JjU + DZiqm
equation (4.41) may be written
9° 2

1 I- ”
—— —R+ = +2uV(R.6) -k’ |V =
[ ¥ +R2+ uVo( ) Lj]\b 0 (4.42)
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where
k? = 2ulE — Bj(j + 1)] (4.43)

and B = 1/(2]) is the rotational constant of the molecule BC.
We may now make use of the orthonormality properties of the basis functions, Vj;,ym and

ZjQpJM :
f y;[‘ij (r; ﬁ)yj'[/pr'M'(f'; f() dif dR = 5jj'5”r(spp'5”r3MM'
and
We operate on equation (4.42) from the left with
/ drdR yﬁpm (r;R)
or

/ & R 2, R

according to whether the SF or the BF expansion, equation (4.35) or (4.36), is used for the
wave function, ¥. Equation (4.42) then reduces to

d> I+ 1)
dR? R?

=2u Y (IpIMVR.OOWTIP I MYFG' TP I M'IR) (4.44)
jrpI'M’

+ k}] F(jlpJM |R)

or

9

e, -
[ -+ kj-] G(iQpJM |R)

dR-

=2u Y (QpIMIV(R.E)
JQUp M

Py

-

+ V'SLp' I’ MHYGG'QLp' T M'|R) (4.45)

2uR?

depending on whether the SF or the BF basis functions are used. When deriving
equation (4.44), we have made use of the fact that

|2yj1,,jM =1+ DYjpsm

which gives rise to the centrifugal term, /(I + 1) /R?. We use the more compact bra-ket
notation on the right-hand sides of equations (4.44) and (4.45).
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Equations (4.44) and 4.45) are equivalent, and identical cross-sections should be obtained
when these equations are solved without further approximation. Both (4.44) and (4.45)
represent sets of ordinary differential equations, which are linear in the functions of the
radial coordinate, F(R) or G(R), involve second-order derivatives with respect to R, and
are ‘coupled’ through the matrix elements on the right-hand sides. Powerful numerical
techniques have been developed for solving such systems of equations and incorporated
in the MOLSCAT [53]. HIBRIDON [54] and MOLCOL [55] computer codes.

The use of either equation (4.44) or equation (4.45) has its advantages and drawbacks.
In (4.44), the centrifugal term takes a simple form because the SF basis functions are
eigenfunctions of the operator I°. However, in the matrix elements on the right-hand side, the
basis functions depend on the SF coordinate, 6, whereas the potential V depends on the BF
coordinate, 6'. The evaluation of these matrix elements will be considered below. In (4.45),
on the other hand, the matrix elements involving V may be evaluated directly, as the basis
functions also depend on BF coordinates. In this case. it is the operator representing the
centrifugal potential, 1°/(2uR*) that poses problems: because the BF coordinate system is
itself rotating, not only centrifugal but also Coriolis terms arise when evaluating this operator,
the expression for which will be given below.

4.3.1  The space-fixed (SF) basis functions
We consider the matrix elements of the potential,

(JlpIM |V (R,0)j'I'p'I'M")
= f Vi B ROV (R0 Y1y (B R)AF AR
= Z m(R)/yﬁ,,JM(f'lﬁ)Px(COSG')Jﬂ'*l'p'J'M'(f:li)df'dli (4.46)
where we introduce the expansion (4.39) of the potential V in terms of the Legendre

polynomials, P;. The integral (4.46) may be evaluated by means of the spherical harmonic
addition theorem [48], which states that

4

P;(cosf8’) =
24+ 1

A
Y Va@®Yn®) (4.47)

V=—A

where Y, is a spherical harmonic function, given by (4.10) above. This theorem converts
the dependence of the potential on 8’, which is the angle between the intramolecular vector
i and the intermolecular vector R (see Fig. 4.2), into its dependence on the SF angles
r=(0,¢)and R = (0, ®) and enables the integrals in equation (4.46) to be carried out. Using
the definition (4.19) of the SF basis functions and the composition relations for spherical
harmonics [48],

19—

oY,
m'vm

cii (4.48)

2
/ Y (B)Y o ()Y (F) dF = [( '+ 1(2A + 1)]

4n(2j+ 1)
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and

9 —

Cotom Cli (4.49)

. . A
fY,;,(R)YIV(R)Y,,,,,,,(R)dR - [(2’+ DEA+ ”]

4r (2l + 1)

Equation (4.46) becomes

GIpIM V(R0 I'p'dI' M)

tI|—

'+ D@L+ 1) o
= " R CI jC
;U( )[(2j+1)(21f+1)] 000000

x Y o ol (4.50)

m'vm > m'mp M’ myvmy
mmym’'m,
!

Using angular momentum recoupling theory (see, for example, [51]), equation (4.50) may
be expressed in terms of a Racah coefficient, W:

GipJM |V (R,8)i'I'p'I'M')

1
[2j + DI+ 1D+ h2l' + D)2
Qi+ 1)

= 87 8mm(—1YH Z VAr(R)

A

x CUACIAW (I’ 1) 4.51)

The Racah coefficient is related to the 6j-symbol of Wigner through

W(jzj’l’;JA)=(—1y+’+f'+"{ { j], i ] (4.52)

and is an algebraic quantity that is readily evaluated for given values of the arguments.
The Kronecker § symbols appearing in (4.51) ensure the conservation of the total angular

momentum, J, and its projection M, on the SF z-axis. As C”(Xx'; and C(’)’(;S vanish identically
unless j + " + A and I + I’ + A, respectively, are even, we see that

(=Y HAHFH R o ] oyt (4.53)
because A is an integer. It follows that
p= (=Y =1yt =p (4.54)

1.e. the parity is conserved. Using these conservation relations, we may write equation (4.51)
in the more compact form

GlpIMIV (RO I'pIM) = 3 A (RS GL 1) (4.55)
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where the algebraic coefficient

1
[2j+ D@L+ D+ D@l + D]?
2x+1)

HGLJT D) = (=1

x CUACIAW (11" T 1) (4.56)

is independent of the projection quantum number M. The coefficients f; (jI.j'l':J) were
first introduced by Percival and Seaton [46], who were concerned with e™—H scattering
(see Chapter 9), and are often referred to as ‘Percival-Seaton coefficients’. The coupled
equations (4.44) may now be written

a  +y o,
- k> | F(ilpJ IR
[dR2 R ,] UlpJ1R)
=2u Y unRKGLITDFGTpIIR) (4.57)
JUx

where the index M has been dropped, as the equations are independent of this quantum
number.

It is instructive to consider the form of these equations for A = 0. In this case, the Clebsch-
Gordan coefficients in (4.56) are non-vanishing only when j=j" and / =1’, and hence no
collisional coupling between different rotational states of the molecule BC can occur. The
term with 2 =0 in the interaction potential (4.39) is angle independent, as Py(cos6') = 1.
and cannot induce rotational excitation (or de-excitation) of the molecule; v¢(R) contributes
only to elastic scattering of A on BC. Terms in the potential with A > 1, on the other hand,
can give rise to rotational transitions in the molecule, subject to the triangular inequalities
lj —j'| <& <j+/ and the requirement that j +; + A should be an even integer. Thus, if
j=0,A=j =j —j= Aj. Inthe CO molecule, for example. excitation from the ground state,
j=0.t0j =1 is induced by the term with A = | in the interaction potential. Similarly, direct
excitation from j =0 to j' = 2 is induced by the following term, with A = 2, and so on. The
absolute magnitudes of successive coefficients v, (R) in the expansion of the potential (4.39)
tend to decrease as A increases, and the probability of transitions involving increasing values
of Aj becomes progressively smaller.

In the case of homonuclear molecules, where B and C are identical (Ha, N2, O, ...),
the interaction potential is clearly invariant under exchange of B and C. equivalent to the
operation 8’ — 7 —6’. As cos(r —8') = —cos 6', and

P;(—cos6’) = Py(cos8’)
when A is even, and
Py(—cosf’) = —P;(cos6")

when A is odd, it follows that only those terms with even values of A appear in the interaction
potential. As j + ;' + A must also be an even integer, collisional transitions between even and
odd values of the rotational quantum number j cannot occur.
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4.3.2  The body-fixed (BF) basis functions
We must evaluate the matrix elements of the effective potential, Veg(r,0'),
comprising the interaction potential, V (R, 6’), and the centrifugal potential, 12 /(2 R?):

2
i QpIM |V (R.6' 'Q'p'I'M’
(iSpIM |V ( )+(2MR2)U p )
12 . .
=f3,~?zpm( )[V(R 0') + —— R ]Zj,fz,p,j,M,(f";R)df"dR (4.58)

The contribution of the interaction potential to this integral is readily evaluated. Using the
definition of the BF basis functions (4.27), the relation

) —

P;(cosf’) = ( ) Yio(6',¢") (4.59)

2A + 1

the orthogonality relation for the rotation matrix elements

: 4
/D,{,Q@,(-),O)D,{,’rgw. ©,0)sin ©dO dd = 8;,8uy- (2./ 1 1) (4.60)

and the composition relation for spherical harmonics

tO|—

a7 At ~r At 2.I 1) 2),-{— l)
/)?E(r)yko(r)ﬂfg'(r)dr =SQQ/[( J + (¢ ] S H 'k

ar(2j+ 1) 200 C000 (4.61)
we obtain

(QPIMIV(R.6H'Qp' I’ M)

b=

(2 + DQ2j + D]
A+ 1)

= 5QQ'3z)p'5JJ'5MM'(—l)Q Z U; (R)
A
Ji'h iR
x ConCa,—a0 (4.62)

Equation (4.62) incorporates the same conservation properties (J =J '"M=M' p=p"
as those encountered above in the discussion of the matrix elements of the potential in
the SF representation. In addition, we have the relation Q = '. This latter property arises
from the invariance of the potential under rotations about the BF Z-axis, that is, from the fact
that V is independent of ¢’. The torque about the Z-axis is 'z = — 9V /9¢’, and it follows
that the component of the angular momentum, 2. about this same axis cannot be modified
by the interaction potential. On the other hand. the angular momentum operator, 12,
change the value of Q. Using the quantum theory of angular momentum, it may be shown
that the non-vanishing matrix elements of the centrifugal potential operator in equation (4.58)
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are given by
QpIM| —— [jOpIM
(<p. |2uR2U pIM )
1 “ e l _ "2
=.HJ-% )+10j-) 22 (4.63)
2uR-
and
GOPIM | ——|j. Q + 1, pIM)
2uR-
1 1
= —(1+3850)2 (1 + g4 )"
- 1 . |
JU+1DH =R D2+ 1) -+ D)2
g VU +1) ( N2+ 1) ( )l (4.64)

2uR?

[45, 52. 56]. These results are to be compared with /(I + 1)/ (2uR?). the corresponding
matrix elements when SF functions are used. The reason for the additional complexity of
equations (4.63) and (4.64) — Coriolis forces in the BF frame — has already been mentioned.

Inspection of equations (4.62—4.64) shows the matrix elements of both the interaction
potential and the centrifugal potential to be independent of the projection quantum number.
M . Accordingly, the coupled equations (4.45) may be written

T P
= 2u }: Vet G,/ JIRVG ('Y pd IR) (4.65)
gy

where Ve (2,52’ J|R) denotes a matrix element (4.58) of the effective potential,
Vet (R.6') = V(R.0') + 1)/ 2uR?) (4.66)

These equations have a form that is clearly similar to the SF-coupled equations (4.57), and
they can be solved by means of the same algorithms.

In summary, Schrodinger’s equation for the collision between an atom A and a diatomic
molecule BC may be reduced to a set of coupled differential equations. These equations
have a similar structure when written in terms of SF or BF coordinates; the Z-axis of the
BF coordinate system is chosen to coincide with the vector from the centre of mass M of
the molecule to the atom A. The matrix elements of the interaction potential are more tricky
to evaluate in the SF frame than in the BF frame, whereas, for the matrix elements of the
centrifugal potential, the opposite is true.

One reason for deriving both forms, (4.57) and (4.65), of the coupled equations is that they
lend themselves to different types of approximation. The centrifugal potential, 12 /QQuR?),
varies as R™2, whereas, in the collision between a neutral atom and a neutral molecule,
the leading term in the potential energy expansion (4.39) varies as R~° at long range.
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This comparison suggests that collisions at long range, that is, collisions at large values
of the impact parameter and hence of the relative angular momentum, /, might be solved by
means of the SF equations with an approximate form of the interaction potential. A possible
approximation consists of truncating the potential energy expansion to just a few terms. On
the other hand, short-range collisions and small values of / could be solved by means of the
BF equations and an approximate form of the centrifugal potential.

Rotationally inelastic collisions involving neutral particles tend to be induced by the
interaction potential at short range and lend themselves to approximations based upon the BF-
coupled equations; the related approximations will now be presented. Rotationally inelastic
collisions form an important category of astrophysical processes. Approximate methods are,
and are likely to continue to be, essential aids to solving certain types of molecular collision
problems; they are helpful also in understanding the physics involved in such processes.

4.3.3  The coupled states (CS) approximation

The coupled states, or centrifugal decoupling, approximation was introduced by
McGuire and Kouri {57]; it has proved to be one of the most successful approximations and
has been used extensively in studies of rotational and also vibrational excitation processes.
McGuire and Kouri used the BF formulation of the scattering of an atom on a rigid rotor, with
the matrix elements of the centrifugal potential, (4.63) and (4.64), approximated by their SF
equivalent forms, that is,

(QPIM 12/ QuRH QU pIM ) = 8aa.1(1 + 1)/ (2uR?) (4.67)

We see from (4.67) that, subject to this approximation, the centrifugal potential conserves
the value of the projection quantum number, Q. As the interaction potential also conserves
Q |cf. equation (4.62)], McGuire and Kouri called this approximation the ‘j.-conserving
coupled states approximation’. The BF equations (4.65) are now coupled only through the
rotational quantum number, j. Thus, the problem reduces to solving, for each value of , a
set of differential equations coupled in j, rather than a single set of equations. coupled in both
j and .

The consequent saving in computing time can be substantial. sometimes rendering feasible
calculations which would not be practical otherwise. We recall that, as 2 is the projection
of both j and J on the BF Z-axis, and = ||, the quantum theory of angular momentum
requires that

Q=0.1,...,min(,J) [p=(=17]
Q=1,2....,minG.J) [p=-(-1)]

where min(j,J) denotes the lesser of j and J. For a problem involving the rotational states
j=0.1....,jmax and for J > jmax. the corresponding numbers of coupled equations are

jmax

N=Y"G+D=Gmax + Dimn +2)/2 p=(=D’]
j=0
Jmax

N=Zj=jmax(jmax+])/2 [P-—-—(—l)j]

=0
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Depending on the algorithm that is used, the computer time requirement, 7, can increase with
N asrapidly as T o« N. The numerical solution of the complete sets of coupled equations then
requires a time T ocj,,, /4 for large jmax. On the other hand, when the CS approximation is
employed, the number of coupled channels is (jmax + !) for Q=0, Jmax for Q=1, Umax — 1)
for Q=2, and so on, up to 1 channel for Q =jmax. The corresponding computer time

requirement is

Jmax

T oY [G+ D+~ jhan/2
j=0

Thus, the CS approximation is more rapid by a factor ~ j2,. /2. Even when modest numbers
of rotational levels are involved, jmax & 5, say, using the CS approximation can be about an
order of magnitude faster than solving the complete sets of coupled equations.

4.3.4  The infinite order sudden (10S) approximation

As was recognized by McGuire and Kouri [57], the essence of the CS approximation
is to neglect the rotation in space of the BF coordinate system when evaluating the centrifugal
potential. If the sudden approximation to the rotation of the diatomic molecule is also
applicable, that is, if the molecule does not rotate appreciably in the course of the collision,
then 6’ =~ constant. This additional approximation is most appropriate for heavy molecules
that rotate only slowly and have small rotational constants, B, at collision energies, E, that
are large compared with the rotational excitation energies, Bj(j + 1), of the levels in question.
Then, it follows from (4.43) that

k? = 2ulE — Bj(j + D] ~ 2uE = k? (4.68)
and the scattering equations (4.42) reduce to

d> I+ ) , )
- —2uV(R,0)+k*|G)(R,0') =0 4.69
[dR2 R? nV( ) + ] 1( ) ( )

which is to be solved for given values of the parameters 6’ and /.

The combination of the centrifugal decoupling and the energy sudden approximations,
which leads to equations of the relatively simple form (4.69), is known as the infinite order
sudden (IOS) approximation; it derives from the work of Tsien and Pack [58-60] and Pack
[61]. This approximation was used extensively in studies of rotational and rovibrational
excitation, in a form due to Secrest [62]. The problem of rovibrational excitation will be
considered in Chapter 5. The use of the IOS approximation is sometimes necessary, but the
CS approximation is certainly to be preferred, whenever its use is feasible.

4.3.5  Boundary conditions
The differential equations derived above, whether exact or approximate, are to
be solved subject to appropriate boundary conditions. In order to illustrate the principles
involved, we shall consider the form of the boundary conditions which are appropriate when
the simplest approximation to the coupled equations, the IOS approximation, is employed.
We are concerned with problems such that

V(R.0'Y >> E
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as R — 0, and
V(R,60) ~R™"

as R — oo, where n > 2 is an integer. The scattering boundary conditions appropriate to this
form of potential are

G/(R,0') = 0

as R — 0, and

I
Gi(R,6") ~ k2 R[ji(kR)A;(6") — n;(kR)B,(6")) (4.70)

as R — o00; j; and n; are spherical Bessel functions of the first and second kinds. respectively
[47]. The coefficients A;(8") and B;(6’) are determined by solving numerically the differential
equations (4.69), using one of a number of possible algorithms, and fitting to the form (4.70)
in the asymptotic region, where the interaction potential has become vanishingly small (in
practice, small compared with the collision energy, E).

All relevant information on the scattering process is contained in the quantity

S0y =1+ 2iK,6)[1 — iK;(8)]! (4.71)

I
where i = (—1)2 and K;(6’) is given by
K@) = Bi(8)HA; (6" (4.72)

Equations (4.70—4.72) are readily generalized to coupled channels scattering, when K and
S are known as the reactance and scattering matrices, respectively [63].

Equation (4.71), which derives from the sudden approximation to the scattering process,
does not in itself yield information on rotationally inelastic scattering, that is, on scattering
processes involving a change in the rotational state of the molecule. However. this information
may be obtained from

SRS = (jQUSO)'Q)
n n
= / o fd, , 0Yj?z(a’.¢’)S;(6’)Y,~rg(9’.¢’) sing’' d6’ d¢’

T

= 8qq 21 / j}z(e’,O)S,(e'))yQ(e’.0)sin 6’ dé’ (4.73)
H':

Such integrals can be evaluated by means of numerical quadrature, having determined S;(6")

at the appropriate values of §’ by solving the scattering equation (4.69). Partial cross-sections
(i.e. the contributions to the total cross-sections from each value of /) may then be derived from

T Y@+ DISGRIDE G #S) 4.74)

o «Jj)= 5"
k:(2j"+1) 5

and total cross-sections by summing over /.
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An alternative form of (4.74), which is better adapted to discussion, is
- of 'Tr . ot
o «<j)= k—2(2l+l)P1(1 —J) (4.75)
-

where

Pij < J) Z 1ISIGQSDE G #S) (4.76)

(2 + 1
is the probabiliry of the j < j rotationally inelastic transition. The total cross-section is

0 <=3 oG <)

/

¥4 . o/
=3 Y QI+ PG <) (4.77)
7o

Equation (4.77) is the quantum mechanical equivalent of the semi-classical expression for
a cross-section as an integral of the corresponding transition probability over the impact
parameter

¢
o(j «j)= 27T/ P,(j < j)bdb (4.78)
0

The impact parameter. b, is defined as the distance of closest approach of the atom A to the
centre of mass M of the molecule BC, if the atom were to follow a straight-line trajectory.
The semi-classical transition probability, P,(j <), is a function of the classical impact
parameter for a given transition between the quantized states of the molecule. To derive (4.77)
from (4.78), we note the correspondence between the classical and quantal expressions for
the square of the relative angular momentum,

2uEP? = I(1 + 1) = k?b°
where k is the wave number. Differentiating for a given (constant) value of E, we obtain
2k*bdb = (21 + 1) d!

where d/ = | in the quantal limit.

It may be seen from (4.77) or (4.78) that the basic task of either a quantum mechanical or
a semi-classical calculation of a collision process is to evaluate the transition probabilities,
P; or Py, respectively. In subsequent applications of the results, the quantity that is required
is the rate coefficient, which is related to the cross-section through

o0
(oV)jej = A vy ojj (Vp)f (p. T)dvy (4.79)
where v;; denotes the relative collision velocity of the atom and molecule in the initial

channel, j’, and f (v, T) is the Maxwellian velocity distribution at kinetic temperature, T.
A Maxwellian distribution is almost always adopted, on the grounds that the timescale for
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elastic collisions with the most abundant species (H, He or H3), which tend to thermalize the
velocity distribution, is less than the timescale for inelastic collisions, which have smaller
cross-sections. Furthermore, in the astrophysical context, the actual velocity distribution
cannot be determined, in general. From detailed balance, we have that

o —Iwy =0 (' «— kiw; (4.80)
where the wave number, ;. is given by

k
h

and where u is the reduced mass of the atom-molecule system. The statistical weight
(degeneracy), wj. is

ki =

wj=2+1

Equation (4.79) may be written as

h* 2
Wi = 5\ WkeT

where /i=h/(2m) and A is Planck’s constant. kg is Boltzmann's constant. and

19} e

~
]0 Qj‘,-r(xj")e-"f' d.\'j' (4.81)

nQ =0 < Ik wy
or, from (4.77),

Q=@+ 1Y QL+ DPG <)) (4.82)
l

The dimensionless quantity, §2; ;. termed the collision strength in the theory of electron—-atom
scattering. is symmetric in j and j'. Substituting numerical values for the constants in (4.81).
we obtain, in cm® s~ ', the units customarily used for rate coefficients.

.11 x 10710 e
(Ov)jj = ——— Q) (xj e dyj (4.83)
0

LT3
ij

In problems involving rotational excitation. the numerical value of the summation in (4.82)
is typically of the order of 1. and so the corresponding rate coefficients (4.83) are of the order
of 10~ em* s™! for T ~ 100K.

4.4  The rotational excitation of non-linear molecules

Many important interstellar molecules have non-linear structures. Fortunately,
they generally retain some symmetry properties that can be exploited to make numerical
calculations more tractable; these same properties also lead to collisional propensity rules.
Examples of such molecules are ammonia (NH3). a symmetric top, water (H20), an
asymmetric top, and methanol (CH3OH). whichisa near-symmetric top that exhibits internal
torsional motion of the CHs relative to the OH group. Each of these examples of classes of
molecules will now be discussed.
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4.4.1 Symmetric tops

The structure of symmetric top molecules such as ammonia was considered in the
classic text of Townes and Shawlow [64]. In the case of NHj, the three hydrogen nuclei form
an equilateral triangle, and the nitrogen nucleus is on the line perpendicular to this plane and
passing through the geometrical centre of the triangle. The molecule can perform end-over-
end rotational motion, which we shall treat using the ‘rigid rotor’ approximation. We denote
the rotational quantum number by j, the projection of the rotational angular momentum on
the symmetry axis of the molecule by &, and its projection on the space-fixed z-axis by m.
The internal hamiltonian is three-fold symmetric about the symmetry axis of the molecule,
i.e. the hamiltonian is invariant under a rotation through 120° about this axis, which is the
body-fixed Z-axis.

The three hydrogen nuclei (protons) are identical fermions, which obey Fermi-Dirac
statistics. Accordingly, the wave function must be asymmetric under exchange of any pair
of protons. Townes and Shawlow [64] showed that this constraint leads to an association
of rotational states for which k =3n, where n=0, 1,2, ..., with the *parallel’ nuclear spin
state, I = 3/2 (ortho-NH3). On the other hand, the rotational states with k =3n+ 1, 3n+2
are associated with the ‘anti-parallel’ nuclear spin state, / = 1/2 (para-NH3). Although the
nuclear spin degeneracy of ortho-NH3 (2/ + 1 =4) is twice that of para-NH3 (27 + 1 =2),
the latter has twice as many rotational states (j, k): in any set of three consecutive values of
k, two belong to para but only one to ortho. It follows that the total statistical weights of the
ortho and the para levels are equal to 4. [Compare this with the case of Ha, where the total
statistical weights of the ortho and para levels are 3 and I, respectively.]

The internal rotational hamiltonian of a top may be written as

2 ) A
Jx Jy Jz
=2x Ly 4 JZ 4.84
21y 2ly 217 ( )
where jx , jy.jz are the components of the rotational angular momentum, j, along the internal
BF axes X, Y, Z; the Z-axis is taken to be the symmetry axis of the molecule. Ix, Iy, Iz are
the moments of inertia along the BF axes. When the BF axes are taken to coincide with the
principal axes of the molecule, the moment of inertia tensor, I, is diagonal:

Ix 0 O
1= 0O Iy O
0O 0 Iy

In a symmetric top molecule, such as ammonia, Ix =Iy. As j> = ji, + j,z, + j%. the rotational
hamiltonian takes the form

2 1 1 ,
h= " I 4
oy T (212 20y )’Z (4.85)

The rotational eigenfunction, |jkm) [see equation (4.87) below], is an eigenfunction of j2 with
eigenvalue j(j + 1), of jz with eigenvalue k, and of j, with eigenvalue m (all in atomic units).
Hence, we have the relation

TG (1 1Y 0]
h[,km)_[ T +(212 21X)k][/km) (4.86)
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where the eigenvalues of the rotational hamiltonian are given by the term in square brackets in
equation (4.86). To each value of the rotational quantum number, j, there correspond (2j + 1)
values of the projection quantum number, k=—j, —j + 1,...,0,...,j— 1,j. However,
the expression for the eigenvalue involves k%, and so the states k = |k| and k = — |k| are
degenerate, i.e. they have the same eigenenergy.

The eigenfunctions, |jkm), of the rotational hamiltonian, A, are expressible in terms of the
elements of the rotation matrix, D [cf. equation (4.12)], appropriately normalized, namely

ljkm) = (2] +’,l )_
8-

where (a, B, y) are the Euler angles that rotate the SF coordinate system into the BF system,
defined above. As states |jkm) and |j, —km) are degenerate, the linear combinations

N —

D (a,B,y) (4.87)

1
likme) = [2(1 + 8k0)1™ 2 (jkm) + €lj, —km)) (4.88)

with € = £+ 1 are also eigenfunctions of h with the same eigenenergy. The states withe = £ |
may be identified with the components of the inversion doublets which occur in NHj,
for k > 0, owing to the inversion motion of the nitrogen nucleus through the plane of the
hydrogens. The state for which (—1Ye =+ 1 is the asymmetric (upper) inversion state,
whereas the state for which (— 1Ye = — 1 is the symmetric (lower) inversion state. It may
be seen from equation (4.88) that only the states with € =+ 1 exist when k = 0; this implies
that the the lower (symmetric) inversion state i1s missing when £ =0 and j is even, and the
upper (asymmetric) inversion state is missing when k =0 and j is odd.

In practice, the inversion motion raises the degeneracy (i.e. gives rise to a splitting) of the
states with ¢ =+ 1 and € = — 1. This splitting is small compared with the separation of the
rotational levels and is neglected in the rigid rotor approximation. Nonetheless, this splitting is
important spectroscopically: transitions between the two components of an inversion doublet
(‘inversion transitions’) enable interstellar ammonia to be observed from the ground, at radio
wavelengths.

The rotational excitation of NH3 by He was studied by Green [65,66]. We shall follow his
approach, treating the molecule as a rigid symmetric top. In Fig. 4.3 the coordinates describing
the interaction between NH3 and He are shown schematically. The BF axes (X. Y, Z) provide
a reference frame in which to locate the He atom, whose spherical polar coordinates are
(R, 6', ¢"). The interaction potential may be expanded in the form

A
V(R,H'.(ﬁ’) = Z Z UAu(R)YMt(O’-(p,)

A u=—aA

A Yo, (0.0 + (=DAYs (6. ¢’
“ Y Y vty OO T D0 )
A u=0 1o

When writing (4.89), use is made of the facts that V is real and symmetric with respect to
reflection in the XZ plane, and of the property

Y; (8',¢) = (—=D'Yr_u6".9)
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Y4

X |

Figure 4.3 Defining the body-fixed coordinate system XYZ of NH3, a symmetric top; the
origin of the coordinate system is at the centre of mass of the molecule. The spherical polar
coordinates (R, 6, ¢'), determine the position of the He atom, relative to the body-fixed
frame.

of the spherical harmonics. Owing to the three-fold symmetry of the potential, u is restricted
to integral multiples of 3.

The interaction potential (4.89) is expressed in the BF frame (X. Y, Z), whereas the
rotational eigenfunctions, (4.87) and (4.88), are expressed in the SF frame (x, v, z). The
relationship

Viu(0'.¢") =Y Dl (. B.y)Y5(6.9) (4.90)

[cf. equation (4.18)] transforms the spherical harmonics in (4.89) from the BF coordinates
(6', ¢') into the SF coordinates (8, ¢), yielding V(a, B.y.R.0,¢). We recall that the Euler
angles (a, B. y) rotate the SF frame into the BF frame.

The total wave function describing the atom—molecule system may be expanded in terms
of the functions of the total angular momentum, J = j +1, where j is the rotational angular
momentum of the molecule and 1 is the orbital angular momentum associated with the motion
of the atom relative to the molecule:

UkelIM ) = (jmlm;|JM )|jkme)|lm;) 4.91)
In (4.91),
Hmy) = Yim, (6, @)
and
jmimy|IM ) = Cy

is a Clebsch—Gordan coefficient; |jkme) is given by equation (4.88). The total wave function
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may be written in terms of the functions (4.91) as

F(jkelJM|R)

Vi.py R =) ——

Jke
UM

ljkelJM) (4.92)

where R = (R. 8, ¢) is the position vector of the He atom in the SF coordinate system.
The Schrodinger equation (4.37) must now be solved. The total hamiltonian is

2
VR

H=h- + V(a,B8,y,R) (4.93)
2u

where # is the internal rotational hamiltonian (4.85). Schrodinger’s equation reduces to

> U +1)
dR? R?

+ xfk] F(jkelJM|R)

=2u Y (kelIM|V(a,B.y . R)K'€IIM)F('k'e'IMIR) (4.94)
jkelr

where

2:2 E_j(j+l)_(__l___l-)k2 4
ik = [ 207 2Ix (495

and we use «, rather than &, to denote the wave number. in order to distinguish it from the
projection of j on the symmetry axis of the molecule. Once again, the total angular momentum
J and its projection M on the SF z-axis are conserved, i.e. their values remain unchanged
during the collision.

The matrix elements of the interaction potential, V, which appear on the right-hand side
of (4.94) may be derived as follows. First, we substitute equation (4.88) into equation (4.91)
and obtain

UkelUM) = (jmim;|JM )
x [2(1 + 81\.0)]—% (km) + €lj, —km))|lm;)
= [2(1 + 8k0)]_% (UkUM ) + €|j. —klIM )) (4.96)
where
UkLIM ) = (jmim;|JM )|jkm)|Im,) (4.97)
Second. we make use of the following relation. in terms of 3j- and 6j-coefficients,

GkIM |V (at, B.y Rk IM)

1
T 2+ D+ DRI+ DRI+ DHRA+ D2
=Zvlu(_l)j+j+k__][(]+ )(_] )( )( )( ]

4
Au

I I A i 7 A) Jj I’J’ 4.98)
x(OOO)(k U A A A (@.
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which expresses the matrix elements of V in the basis (4.97). We note that equation (4.98) is
independent of M, the projection of the total angular momentum, J, on the z-axis.

The coupled equations (4.94) must be solved, subject to the appropriate physical boundary
conditions, to obtain the reactance matrix, K, and hence the scattering matrix, S. The partial
cross-sections are then derived from

/4

oy (jke «—jk'e¢' )= ——
K+ 1)

x Y (2 + DT (kel jk'e' 1) (4.99)
Lr

where T, (jkel,j'k’€’l’) is an element of the transmission matrix, which is related to the S
matrix by

T=1-S (4.100)

The total cross-section is obtained by summing (4.99) over J.

It will be recalled that the index u, which appears in the expansion (4.89), is restricted to
integral multiples of 3, owing to the three-fold symmetry of the interaction potential about
the symmetry axis of the ammonia molecule. As a consequence, the 3j-symbol

joJA

k —k' u
in (4.98) restricts changes in the projection quantum number to Ak = 3n, where nis an integer.
This restriction relates to the fact that ortho- and para-NH3 may be treated as distinct species,

as far as non-reactive collisions are concerned. Just as in the case of Hy, the ortho and para
forms interconvert only through proton-exchange reactions.

4.4.2 Asymmetric tops
The category of asymmetric tops comprises important interstellar molecules such

as water (H;0O) and formaldehyde (H,CO). Some polyatomic molecules, such as methanol
(CH3OH), are asymmetric tops that are close to being symmetric tops [if the internal rotation
of the methyl (CH3) relative to the hydroxyl (OH) group — the torsional motion, which is
analogous to a vibration — is neglected].

In an asymmetric top, the three principal moments of inertia have different values, i.e.
Ix # Iy # Iz, and the internal rotational hamiltonian (4.84) may be written as

:2
h_,+(1_1),2+(1 1\ 5
oy " \any T2 )Y T \a, T )z
= Aj* 4 (B — A)j} + (C — A)j2 (4.101)
where A=1/(2Ix), B=1/(2ly) and C = 1/(21z) are the rotational constants. It follows that
hljkm) = [Aj( + 1) + (C — A)k? + (B — A)j2 ] |jkm) (4.102)

where |jkm) is given by equation (4.87).
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The term (B — A)jf, in the hamiltonian h determines the degree of asymmetry of the top.
The step-up, j4+, and step-down, j_, angular momentum (ladder) operators are defined by

J+ =Jx + Yy
and

J- =Jx —Vy
whence

2y =j+ —J-
and

—4jy =J3 +72 =i —iois
Operating on |jkm) with jf,, we obtain
!
i bikm) = — 2 {[(j——k)(j+k F DG =k = DG +k+21 ik +2,m)
FIG+KG—k+ DG +k=1DG—k+2)]7 .k —2.m)
—2[j(j+ 1) —k2]| Ljkm) (4.103)

and equation (4.102) becomes

A+B ,
hUkm):[( ; )j(i+1)+(C—(A;B))k“]Ukm)

+ (A;B) ((—Kk)G+k+D(—k— 1)(j+k+2)]%lj,k+2.m>

+ (A;B) [(i+k)(j—k+l)(j+k—-1)(j-—k+2)]%li.k—2,m)
= (A;B) GG + 1) — k2] Ljkm) + Ck>|jkm)

+ (A;B) UG+ D) — kik + 1))

1
x G+1)—Gk+Dk+2]12j.k +2,m)
(A -

B 1
2 )U(i+1)—k(k—1)]3

+

1
x[G+1) = (k—=1k =212,k —2.m) (4.104)

We see from equation (4.104) that |jkm) is not an eigenfunction of h, as |j, k 2, m) appear
on the right-hand side. Put another way, the matrix of 4 in the basis |jkm) is not diagonal in k:
there are off-diagonal elements involving k &+ 2. The relative magnitudes of the off-diagonal
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and diagonal elements involving k are proportional to (A — B)/(2C — A — B). We note that
the off-diagonal elements vanish in the limit of the symmetric top. A = B, as must be the case.

The eigenenergies of the asymmetric top may be obtained by diagonalizing the hamiltonian
matrix. The projection, k. is no longer a ‘good’ quantum number. As the off-diagonal couplings
are to states with k £ 2, either even or odd values of k are ‘mixed’ through the diagonalization
procedure. In other words. the eigenfunctions of A may be written as linear combinations of
the eigenfunctions of the symmetric top, |jkm), for given values of j and m,

litm) =Y aciljkm) (4.105)
k

where the sum extends over either even or odd values of k. and t labels the asymmetric top
eigenfunctions. The number of the asymmetric top eigenfunctions is the same as the number
of the ‘primitive’ symmetric top functions of which they are composed; 7 is taken to be an
integer. —j <t <j, which orders the energy levels for a given value of j. In the case of a
near-symmetric top. A & B, a particular value of & dominates the expansion on the right-hand
side of equation (4.105). i.e. the corresponding value of a,; =~ I, whereas a,; << 1 for all
other values of k. The label T may then be identified with the dominant value of k. In the
limit of the symmetric top, A =B. If A= B > C, the top is oblate, whereas, if A=B < C. the
top 1s prolate.

The first quantitative calculations for an astrophysically important asymmetric top
molecule related to formaldehyde (H2CO), in collision with He [67]. The formaldehyde
molecule is shown schematically in Fig. 4.4. The atoms comprising the molecule all lie in
the XZ plane. with H atoms symmetrically disposed either side of the symmetry axis. i.e.
the H atoms have the same Z coordinate and their X coordinates are equal in magnitude
but opposite in sign. We have already noted [equation (4.87)] that the basis functions of the
asymmetric top are the normalized rotation matrix elements

1
km) = ( ij'ﬂ ) Dink(a'ﬂ'y)

H

> X

/\

H

Figure 4.4 Schematic diagram of the formaldehyde molecule. The coordinate origin is
located at the centre of mass of the molecule. Distances are in units of 10~ 10 m.
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Exchange of the (identical) hydrogen nuclei is effected by the transformation y — y + 1,
under which |jkm) — exp(ikm)|jkm). Thus, if k is even, |jkm) — |jkm), whereas, if k is odd,
|jkm) — — |jkm), 1.e. the basis functions are symmetric or asymmetric under exchange of
the H nuclei, according as k is even or odd, respectively. As the H nuclei (protons) are
fermions, their total wave function, including the spin function, must be asymmetric under
their exchange. The spin functions are

I =1.M =1: ara?

PO

I=1.M=0: (a1 B2 +a2py)/2
I=1,M==1: 162

and

+Of—

I=0M, =0: (a1 B2 —a2p1)/2

for the ortho (/ = 1) and the para (/ = 0) states; M, is the corresponding projection quantum
number. o denotes the proton spin state with projection my = 1/2 (*spin up’) and B the state
with mg = — 1/2 (‘spin down’), and the subscripts ‘1’ and ‘2’ label the two protons. The
ortho states are symmetric under proton exchange, i.e. under interchange of the subscripts
‘1" and ‘2, whereas the para state is asymmetric. As the total wave function is a product of
the spin and the rotation parts, Fermi—Dirac statistics require that ortho-H>CO is associated
with rotational states for which k is odd only, and para-H>CO is associated with rotational
states for which k is even only. (This circumstance is similar to that in H>, where j is odd
in ortho-H> and even in para-H».) Transitions between the ortho and the para forms can be
effected only by proton or hydrogen exchange reactions.

The rotational constants of formaldehyde are A=1295cm™!, B=1.134cm™!,
C =9.407cm~', where A, B and C relate to the X. Y, and Z axes. defined in Fig. 4.4. When
classifying the degree of asymmetry of tops. it is conventional to order the rotational constants
suchthatA > B > C. In the example of formaldehyde. considered above, this is equivalentto a
cyclic permutation of the coordinate axes. X — Y — Z — X . The Ray asvmmetry parameter
is then defined as

2B—-A-C
K= ————
A-C

[64]. In the limit of a prolate symmetric top (B=C). « = — 1, and in the limit of an oblate
symmetric top (B =A). k = 1. Taking the values of the rotational constants that correspond
to formaldehyde, we obtain k = — 0.961, which is not far from the prolate symmetric top
limit. Water (H20). on the other hand. for which k = —0.436. is further from this limit.

The spectroscopic notation for the energy levels of asymmetric tops is often given in terms
of the values of the projection quantum number k in the prolate and oblate symmetric top
limits, k_, and k4| (or k_ and k), respectively. The index T =k_| — k4 [64]. The energy
levels of H2O (para and ortho) up to 200 c¢m™! above the ground state of para—H>O are listed
in Table 4.1. The energy levels may be labelled by j; or by ji_«, -



78 The rotational excitation of molecules

Table 4.1. Energy levels of para- and ortho-H>O up to
200cm™! above the ground state of para-H20

(from [68]). The alternative methods of lubelling the
energy levels, by j. or by ji_ ., are given.

J T k_ ki Energy (em™h) modification
0 0 0 0 0.0000 para

1 -1 0 ] 23.7943 ortho
1 0 1 ] 37.1371 para

] | ] 0 42.3717 ortho
2 =2 0 2 70.0907 para
2 -1 1 2 79.4963 ortho
2 0 1 1 95.1757 para
2 1 2 1 134.9018 ortho
2 2 2 0 136.1641 para
3 -3 0 3 136.7617 ortho
3 =2 1 3 142.2783 para
3 -1 | 2 173.3656 ortho

4.4.3  Asymmetric tops with internal rotation

The example that we shall take of molecules in this category is methanol (CH3OH).
Methanol is one of the most important interstellar molecules. It has been observed in many
millimetre and sub-millimetre transitions, both in dark molecular clouds, where its abundance.
relative to Ha, is of the order of 1077, and in high mass protostellar objects, where its
fractional abundance can reach 107°. Methanol is both a maser (in protostellar objects) and
is sometimes observed in absorption against the cosmic background (2.73 K) radiation field
(in dark clouds). Grain-surface reactions are believed to be important in the production of
methanol, which can be released into the gas phase by sublimation processes or by sputtering,
induced by shock waves.

The richness of the spectrum of methanol reflects the complexity of its internal structure.
In Fig. 4.5 is shown the equilibrium configuration of CH3OH. The hydrogens of the methyl
(CHj) group form an equilateral triangle, as in the case of NH3. The COH group defines a
plane containing the BF Z-axis, which is perpendicular to the plane of the hydrogens and
passes through the centre of mass of the molecule. The symmetry axis of the methyl group
is perpendicular to the plane of the hydrogens and passes through its geometrical centre; it
is parallel to, but slightly displaced from, the Z-axis.

Methanol is a slightly asymmetric top, with rotational constants A=0.823cm™',
B=0.793cm™', and C =4.257cm™! along the X, Y and Z axes (cf. Fig. 4.5), respectively,
in its lowest torsional state [70]. Reordering the rotational constants according to the
convention that A > B > C, which is achieved by a cyclic permutation of the coordinate
axes, X — Y —» Z — X, the Ray asymmetry parameter takes the value x = — 0.983, which
is close to the prolate symmetric top limit (—1). The three protons of the CHz group may
have ‘parallel’ or ‘anti-parallel’ spins, and these spin states can interconvert only through
proton exchange reactions, just as in the case of ammonia. In A-type methanol, the total spin
is I =3/2, whereas, in E-type methanol, I = 1/2; these are equivalent to the ortho and para
forms, respectively, of ammonia. The nuclear spin degeneracy, (2/ + 1), is 4 for A-type and
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Figure 4.5 Defining the body-fixed coordinate system of methanol (CH3;OH). a near
symmetric top. The (X, Y.Z) coordinates of the atoms correspond to the equilibrium
configuration of the molecule [69]. Methanol exhibits internal torsional motion of the CH3
group relative to the OH group.

2 for E-type. However. E-type methanol has two degenerate forms, E; and E». and hence the
total number of E-type states is equal to the total number of A-type states [71]. Our treatment
of the internal motion of methanol closely follows that of Lin and Swalen [72]: but it should
be noted that Lin and Swalen took the YZ plane to be the plane of symmetry of the molecule.
whereas we adopt the XZ plane (cf. Fig. 4.5).

Let us denote the eigenfunctions of methanol by |jkvo). where. as previously, j and k
denote the rotational angular momentum and its projection on the symmetry (Z-) axis: v
denotes the torsional state, and 0 =0 for A-type methanol. 0 =1 for E;-type and 0 = — |
for E>-type. Then the non-vanishing matrix elements of the internal hamiltonian, 4. may be
written

(Jkvo |h|jkvo)

_ (A+ B)
- )

-

GG+ 1) = k%] + Ck* + Egvo (4.106)

(jkvo |hlj.k + 2.V o)

(A—B)
4

1
GG+ 1) =ktk+ D)2

L ‘
x i+ 1D =k + Dk + D12 (4.107)

(jkvolhlj. k —2.v'a)

(A;B)Ug“)—k(k—l)l

tol—

L oy
x G+ 1 = (k= Dk =220 "7 (4.108)
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(jkvalhlj. k + 1,v'0)

D I inive
=-7—(2k+l)[j(j+])—k(k+l)]21‘+"‘ (4.109)

kvo
and

(kvalhlj. k — 1.v'o)

D L. 1 k—1a'e
=—2—(2k+l)L](1+l)—k(k—])]Elkm‘ (4.110)
Eivo =E_j._ 1s the eigenvalue of the equation for the torsional motion. and I,f\:‘a'l” 1s an
overlap matrix element of the torsional eigenfunctions:

kv ot
Ii,." = (kvolk'vo)

The torsional motion is not free, but ‘hindered’ by a three-fold symmetric potential

V3
V(w)=7(l—cos3w) 4.11DH
where w is the angle of rotation of the methyl, relative to the hydroxyl group; V3 =373 cm™ '
is the height of the barrier to torsional motion in methanol. In the limit of an infinite barrier
to torsional motion, Ik‘l‘a" =68,

Equations (4.106—4.110) are generalizations of the previous results for the rigid asymmetric
top. The additional matrix elements (4.109, 4.110) arise from the lack of rigidity of methanol,
which gives rise to its torsional motion. The additional constant D = 0.0026cm ™' << A,B.C.

The energy associated with the torsional motion, Ej,, is much larger for A-type than for
E-type methanol. As these energies appear along the diagonal of the internal hamiltonian
matrix, it follows that the off-diagonal terms are smaller, relative to those on the diagonal,
in A-type. In the limit of vanishingly small off-diagonal terms, the hamiltonian reduces to
that of the symmetric top. This limit is approached for large j and k in both A-type and
E-type, as examination of the off-diagonal terms (4.107-4.110) confirms. In the case of
A-type methanol, the symmetric top limit is approached also for small j and k. and hence
states |j, + k, v, 0 =0) are almost degenerate.

The eigenfunctions of the torsional hamiltonian. |kvo), may be written as linear
combinations of free rotor basis functions, |km,,), where m,, denotes the torsional angular
momentum of the methyl group,

lkvo) = Z Ak vm,, |kmy,), 4.112)
m,,=3s+0
where s is an integer and
1 .
lkm,,) = (27)” 2e " Phogimaw (4.113)

o is a dimensionless molecule-specific parameter [72], given by

p=lu/lz,
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where [, 1s the moment of inertia of the methyl group and /7 is the moment of inertia
of the whole molecule about the Z-axis; the numerical value appropriate to methanol is
p =0.8097 [73].

The torsional wave function, M (w) = |kvo), is the solution of the Mathieu equation

1 d°M (w)

— + (R+ 2cos3w)M (w) =0 4.114)
o dw-

where

a = V3/4F

L (v-3v)
R=—(W-2-Ww4
Va 2

W = E;,, is the torsional eigenenergy and F is the torsional constant. In the case of methanol,
F=27.633cm~"! and V3 =373.1cm~! [70]. The torsional quantum number. v. labels the
different eigenvalues that have the same value of k.

In the case of 0 =0 (A-type methanol) and k = 0. the solutions to the Mathieu equation
are analogous to the symmetrized wave functions of the simple harmonic oscillator,

and

I . A
M(w)= (2m)" 2 Z (ae™ + a_e” ), (4.115)
s>0
in which a; = a_; or ag = — a_,. corresponding to the torsional wave function being either

symmetric or antisymmetric about the equilibrium position, w = 0. and v being even or odd.
respectively. The index v is analogous to that used to label the eigenfunctions of the simple
harmonic oscillator. The lowest energy state for a given & has the quantum number v = 0,
as for the simple harmonic oscillator. In general. the solutions of the Mathieu equation have
to be obtained numerically.

The lowest state of E-type methanol. (j = 1.k = — 1), lies slightly higher (by 5.49 cm™ )
than the lowest state of A-type. (j = 0= k). This energy difference is analogous to, although
much smaller than. that between the lowest states of ortho- and para-H>. where the j = 1 ortho
state is higher, by 118 cm ™', than the j = 0 para state. Such shifts are without consequence in
the context of non-reactive scattering. as the E/A types or para/ortho forms may be treated as
distinct species that cannot interconvert. However, proton exchange reactions with ions such
as H* and HY can interconvert these species, and the energy shifts may become significant.
in this context. In the case of methanol. the energy shift is small (approximately 8 K) and has
an effect on the relative abundances of E- and A-type only in very cold molecular clouds.



