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A Brief History of Prime

Most of the results in this book grow out of one theorem that has probably
been known in some form since antiquity.

Theorem 1.1. [Fundamental Theorem of Arithmetic] Every integer
greater than 1 can be expressed as a product of prime numbers in a way that
is unique up to order.

For the moment, we are using the term prime in its most primitive form –
to mean an irreducible integer greater than one. Thus a positive integer p is
prime if p > 1 and the factorization p = ab into positive integers implies that
either a = 1 or b = 1. The expression “up to order” means simply that we
regard, for example, the two factorizations 6 = 2 · 3 = 3 · 2 as the same.

Theorem 1.1, the Fundamental Theorem of Arithmetic, will reverberate
throughout the text. The fact that the primes are the building blocks for all
integers already suggests they are worth particular study, rather in the way
that scientists study matter at an atomic level. In this case, we need a way of
looking for primes and methods to construct them, identify them, and even
quantify their appearance if possible. Some of these quests took thousands of
years to fulfill, and some are still works in progress. At the end of this chapter,
we will give a proof of Theorem 1.1, but for now we want to get on with our
main theme.

1.1 Euclid and Primes

The first consequence of the Fundamental Theorem of Arithmetic for the
primes is that there must be infinitely many of them.

Theorem 1.2. [Euclid] There are infinitely many primes.

To emphasize the diversity of approaches to number theory, we will give
several proofs of this famous result.
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Euclid’s Proof in Modern Form. If there are only finitely many primes,
we can list them as p1, . . . , pr. Let

N = p1 · · · pr + 1 > 1.

By the Fundamental Theorem of Arithmetic, N can be factorized, so it must
be divisible by some prime pk of our list. Since pk also divides p1 · · · pr, it
must divide the difference

N − p1 · · · pr = 1,

which is impossible, as pk > 1. �

Euler’s Analytic Proof. Assume that there are only finitely many primes,
so they may be listed as p1, . . . , pr. Consider the product

X =
r∏

k=1

(
1 − 1

pk

)−1

.

The product is finite since 1 is not a prime and by hypothesis there are only
finitely many primes. Now expand each factor into a convergent geometric
series,

1
1 − 1

p

= 1 +
1
p

+
1
p2 +

1
p3 + · · · .

For any fixed K, we deduce that

1
1 − 1

p

� 1 +
1
p

+
1
p2 + · · · +

1
pK

.

Putting this into the equation for X gives

X �
(

1 +
1
2

+
1
22 + · · · +

1
2K

)
·
(

1 +
1
3

+
1
32 + · · · +

1
3K

)
·
(

1 +
1
5

+
1
52 + · · · +

1
5K

)
· · ·

(
1 +

1
pr

+
1
p2

r

+ · · · +
1

pK
r

)
= 1 +

1
2

+
1
3

+
1
4

+ · · ·

=
∑

n∈N (K)

1
n

, (1.1)

where
N (K) = {n ∈ N | n = pe1

1 · · · per
r , ei � K for all i}

denotes the set of all natural numbers with the property that each prime
factor appears no more than K times. Notice that the identity (1.1) requires
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the Fundamental Theorem of Arithmetic. Given any number n ∈ N, if K is
large enough, then n ∈ N (K), so we deduce that

X �
∞∑

n=1

1
n

.

The series on the right-hand side (known as the harmonic series) diverges
to infinity, but X is finite. Again we have reached a contradiction from the
assumption that there are finitely many primes. �

Let us recall why the harmonic series diverges to infinity. As with Theo-
rem 1.2, there are many ways to prove this; the first is elementary, while the
second compares the series with an integral.
Elementary Proof. Notice that

1 +
1
2

� 1
2
,

1
3

+
1
4

� 1
2
,

1
5

+
1
6

+
1
7

+
1
8

� 1
2
,

and so on. For any k � 1,

1
2k + 1

+
1

2k + 2
+ · · · +

1
2k+1 � 2k · 1

2k+1 =
1
2
.

This means that
2k+1∑
n=1

1
n

� k

2
for all k � 1,

and it follows that
∞∑

n=1

1
n

diverges. �

Hidden in the last argument is some indication of the rate at which the
harmonic series diverges. Since the sum of the first 2k+1 terms exceeds k/2,
the sum of the first N terms must be approximately Clog N for some positive
constant C. The second proof improves on this: Equation (1.2) gives a sharper
lower bound as well as an upper bound.

Exercise 1.1. Try to prove that
∞∑

n=1

1
n2 diverges using the same technique

of grouping terms together. Of course, this will not work since this series
converges, but you will see something mildly interesting. In particular, can
you use this to estimate the sum?
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Using the Integral Test. Compare
∑N

n=1
1
n with the integral∫ N

1

1
x

dx = log N.

Figure 1.1 shows
∑6

n=1
1
n trapped between

∫ 6
0

1
x+1 dx and 1 +

∫ 6
1

1
x dx; in

general, it follows that

log(N + 1) �
N∑

n=1

1
n

� 1 + log N. (1.2)

This shows again that the harmonic series diverges and that the partial sum
of the first N terms is approximately log N .

y = 1
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y = 1
x+1
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Figure 1.1. Graphs of y = 1
x

and y = 1
x+1 trapping the harmonic series.

�
This proof is a harbinger of more subtle results. Comparing series with

integrals is a powerful technique; more generally, using analytic techniques
to study properties of numbers has been one of the most important ideas in
number theory.

Exercise 1.2. Extend the method illustrated in Figure 1.1 to show that the
sequence (an) defined by

an =
n∑

m=1

1
m

− log n

is decreasing (that is, an+1 � an for all n) and nonnegative. Deduce that it
converges to some number γ, and estimate γ to three digits. This number
is known as the Euler–Mascheroni constant. It is not known if γ is rational,
although it is expected not to be.
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1.2 Summing Over the Primes

We begin this section with yet another proof that there are infinitely many
primes. Recall that P denotes the set of prime numbers.

Theorem 1.3. The series
∑
p∈P

1
p

diverges.

Several proofs are offered; each one provides different insights. We adopt
the convention that p always denotes a prime so, for example,

∑
p>N

ap de-

notes
∑

p∈P,p>N

ap.

Notice that Theorem 1.3 tells us something about the sequence (pn) of
primes that begins p1 = 2, p2 = 3, p3 = 5, . . . . For example, the se-
quence

(
n1+ε/pn

)
cannot be bounded for any ε > 0.

First Proof of Theorem 1.3. We argue by contradiction: Assume that
the series converges. Then there is some N such that∑

p>N

1
p

<
1
2
.

Let
Q =

∏
p�N

p

be the product of all the primes less than or equal to N . The numbers

1 + nQ, n ∈ N,

are never divisible by primes less than N because such primes do divide Q.
Now consider

P =
∞∑

t=1

⎛⎝∑
p>N

1
p

⎞⎠t

<

∞∑
t=1

1
2t

= 1.

We claim that
∞∑

n=1

1
1 + nQ

�
∞∑

t=1

⎛⎝∑
p>N

1
p

⎞⎠t

because every term on the left-hand side appears on the right-hand side at
least once. (Convince yourself of this claim by taking N = 11 and finding
some terms on the right-hand side.) It follows that

∞∑
n=1

1
1 + nQ

� 1. (1.3)
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However, the series in Equation (1.3) diverges since

K∑
n=1

1
1 + nQ

� 1
2Q

K∑
n=1

1
n

for any K, and the right-hand side diverges as K → ∞. This contradiction
proves the theorem. �

Second Proof of Theorem 1.3. We will prove a stronger result, namely∑
p�N

1
p

> log log N − 2. (1.4)

Fix N and let

N(N) = {n ∈ N : all prime factors of n are less than or equal to N}.

Then (just as in Euler’s analytic proof of Theorem 1.2 on p. 8)∑
n∈N(N)

1
n

=
∏

p�N

(
1 + p−1 + p−2 + p−3 + · · · )

=
∏

p�N

(
1 − p−1)−1

.

If n � N , then certainly n ∈ N(N), so∑
n�N

1
n

�
∑

n∈N(N)

1
n

.

It follows by Equation (1.2) that

log N �
∑

n∈N(N)

1
n

=
∏

p�N

(
1 − p−1)−1

. (1.5)

In order to estimate the right-hand side of Equation (1.5), we need the
following bound. For any v ∈ [0, 1/2],

1
1 − v

� ev+v2
. (1.6)

To see why the bound (1.6) holds, let f(v) = (1 − v) exp(v + v2). Then

f′(v) = v(1 − 2v) exp(v + v2) � 0 for v ∈ [0, 1
2 ],

so the fact that f(0) = 1 implies that f(v) � 1 for all v ∈ [0, 1/2].
For any prime p, v = 1

p � 1
2 , so by the bound (1.6)
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p�N

(
1 − p−1)−1 �

∏
p�N

exp
(
p−1 + p−2).

Combining this with Equation (1.5) and taking logarithms gives

log log N �
∑
p�N

(
p−1 + p−2). (1.7)

Finally, we observe that

∑
p

1
p2 <

∞∑
n=2

1
n2 < 1, (1.8)

so the contribution to the right-hand side of Equation (1.7) from
∑

p�N p−2 is
bounded independently of N . This completes the second proof of Theorem 1.3.

�

Exercise 1.3. Prove the second inequality in Equation (1.8) using the integral
test: Show that

N∑
n=2

1
n2 <

∫ N

2

1
(x − 1)2

dx � 1 for all N � 2.

In fact, an estimate stronger than Equation (1.4) holds. Mertens showed
that there is a constant A (approximately 0.261) such that∑

p�N

1
p

= log log N + A + O
(

1
log N

)
. (1.9)

Exercise 1.4. Is it possible to prove Equation (1.9) with O(1) in place of

A + O(
1

log N
)

using only the methods of the second proof of Theorem 1.3?

The third proof of Theorem 1.3 extends the relationship between prod-
ucts such as

∏
p∈P

(
1 − p−1

)−1 and the harmonic series to a factorization of a
function that will later turn out to have a starring role.

Definition 1.4. The Riemann zeta function is defined by

ζ(σ) =
∞∑

n=1

1
nσ

wherever this makes sense.
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Figure 1.2. The graph of ζ(σ) for 1 < σ � 20.

Understanding the properties of this function turns out to be the key to
many deeper properties of the prime numbers. For now, we simply think of σ
as being a real number and note that the series defining ζ(σ) converges by the
integral test for σ > 1 to a positive sum and diverges at σ = 1. For σ > 1, ζ(σ)
is a decreasing function of σ.

Viewed as a real function of a real variable, the zeta function does not look
particularly subtle or useful. Figure 1.2 shows the graph of ζ(σ) for 1 < σ � 20.
Some indication of just how complicated this function really is appears when
it is viewed as a complex-valued function of a complex variable. It is clear
that the series defining the zeta function converges for s = σ + it when σ > 1
(see p. 166 for more on this). Figure 1.3 shows the function �(ζ( 3

2 + it))
for 0 � t � 60, giving the first insight into the complex properties of the zeta
function.

In Chapter 8, the Riemann zeta function is extended to a complex analytic
function defined on the whole complex plane with the exception of a single
pole, and this opens up the most mysterious aspect of the zeta function – its
behavior along the line �(s) = 1

2 . Figure 9.1 on p. 186 gives some idea of how
complicated this is.

Recall that p will be used to denote a prime number, so a product over
the variable p means a product over p ∈ P.

The first step in understanding the zeta function is the Euler product
representation, which is a factorization of the zeta function into terms corre-
sponding to primes. The idea of factorizing a function will be discussed again
at the start of Chapter 9.

Theorem 1.5. [Euler Product Representation] For any σ > 1,

ζ(σ) =
∏
p

(
1 − p−σ

)−1
.
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Figure 1.3. The graph of �(ζ( 3
2 + it)) for 0 � t � 60.

Proof. For any σ > 1,(
1 − 2−σ

)
ζ(σ) =

∞∑
n=1

1
nσ

−
∞∑

n=1

1
(2n)σ

=
∑

n odd

1
nσ

= 1 +
∑

p|n⇒p>2

1
nσ

,

where the last sum is taken over those n with all prime factors greater than 2
(that is, the odd numbers greater than 2).

Now let P be a large prime and repeat the same argument with each of
the primes 3, 5, . . . , P in turn. This gives(

1 − 2−σ
) (

1 − 3−σ
) (

1 − 5−σ
) · · · (1 − P−σ

)
ζ(σ) = 1 +

∑
p|n⇒p>P

1
nσ

.

The last sum ranges over those n with the property that all the prime factors
of n are greater than P . Thus the last sum is a subsum of the tail of the
convergent series defining ζ(σ), and in particular it must tend to zero as P
goes to infinity. It follows that

lim
P→∞

(
1 − 2−σ

) (
1 − 3−σ

) (
1 − 5−σ

) · · · (1 − P−σ
)
ζ(σ) = 1,

so
ζ(σ) =

∏
p

(
1 − p−σ

)−1
.

�

Remark 1.6. An infinite product is defined to be convergent if the correspond-
ing partial products form a convergent sequence, that does not converge to
zero. The nonzero condition is imposed to allow us to take logarithms of in-
finite products, thereby connecting infinite products and infinite sums in a
meaningful way.
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Third Proof of Theorem 1.3. Taking logarithms of the Euler product
representation shows that, for any σ > 1,

log ζ(σ) = −
∑

p

log
(
1 − p−σ

)
= −

∑
p

∞∑
m=1

−1
mpmσ

=
∑

p

1
pσ

+
∑

p

∞∑
m=2

1
mpmσ

. (1.10)

Notice that the series involved converge absolutely, so rearrangement is per-
missible. For any prime p,

1 − 1
pσ

� 1
2
,

so ∑
p

∞∑
m=2

1
mpmσ

<
∑

p

∞∑
m=2

1
pmσ

=
∑

p

1
p2σ

1
1 − p−σ

� 2
∑

p

1
p2σ

� 2ζ(2σ) < 2ζ(2),

which shows that the last double sum in Equation (1.10) is bounded. The
bound 2ζ(2) holds for any σ � 1, and the double sum converges for σ > 1

2 .
Thus

log ζ(σ) =
∑

p

1
pσ

+ O(1).

The left-hand side goes to infinity as σ tends to 1 from above, so the sum on
the right-hand side must do the same. �

1.3 Listing the Primes

Early in the history of the subject, Eratosthenes1 devised a kind of sieve for
listing the primes. To illustrate his method – the sieve of Eratosthenes – we
consider the problem of finding all the primes up to 50. First arrange all the
integers between 1 and 50 in a grid.

1 Eratosthenes of Cyrene (276 b.c.–194 b.c.) was born in what is now Libya. He
made major contributions to many subjects, including finding surprisingly ac-
curate estimates for the circumference of the Earth and the distances from the
Earth to the Sun and the Moon.
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1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Now do the sieving: Eliminate 1, then start with 2 and cross out all num-
bers greater than 2 and divisible by 2. Then take the next surviving number 3
and cross out all the multiples of 3 that are greater than 3. Repeat with
the next surviving number and continue until the numbers divisible by 7 are
crossed out.

Exercise 1.5. Why can you stop sieving once you get to 7?

The remaining numbers are the prime numbers below 50, as shown below.

� 2 3 � 5 � 7 � � �
11 � 13 � � � 17 � 19 �
� � 23 � � � � � 29 �
31 � � � � � 37 � � �
41 � 43 � � � 47 � � �

Understanding the patterns of the surviving numbers remains one of the great
challenges facing mathematics two thousand years after Eratosthenes.

This method has great value, allowing people throughout history to rapidly
create lists of primes. It fails to meet our longer-term objectives however. It
elegantly and efficiently produces lists of primes without having to do trial
divisions but does not help to decide if a given large number (with hundreds
of digits, for example) is prime.

Table 1.1. Early prime hunters.

Name Date Bound
Pietro Cataldi 1588 750
T. Brancker 1688 100000
Felkel Kulik 1876 100330200
Derrick Henry Lehmer 1909 10006721

Table 1.1 is a short list of some of the calculations of prime tables in
recent history; in each case all the primes up to the bound were listed. A
rather different problem is to find exactly how many primes there are below
a certain bound (without finding them all). Kulik listed the smallest factors
of all the integers up to his bound and in particular found all the primes up
to his bound. Lehmer’s table was widely distributed and as a result was very
influential (despite being shorter than Kulik’s table).
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1.3.1 Functions that Generate Primes.

In the seventeenth century attention turned to finding formulas that would
generate the primes. Euler pointed out the following polynomial example.

Example 1.7. The polynomial x2 + x + 41 yields prime values for 0 � x � 39,
but x = 40, 41 do not yield primes.

What is striking about this example is that it is prime for many values in
succession relative to the size of the coefficients and the degree.

Exercise 1.6. (a) [Goldbach 1752] Prove that if f ∈ Z[x] has the property
that f(n) is prime for all n � 1, then f must be a constant.
(b) Extend your argument to show that if f ∈ Z[x] has the property that f(n)
is prime for all n � N for some N , then f must be a constant.
(c) Let P ∈ Z[x1, . . . , xk] be a polynomial in k � 2 variables with integer
coefficients. Define a function f by f(n) = P (n, 2n, 3n, . . . , (k − 1)n), and
assume that f(n) → ∞ as n → ∞. Show that f(n) is composite for infinitely
many values of n.

Remarkably, there is an explicit integral polynomial in several variables
whose set of positive values as the variables run through the nonnegative
integers coincides with the primes. This polynomial was discovered as a by-
product of research into Hilbert’s 10th Problem, which asked if there could
be an algorithm to determine if a polynomial Diophantine2 problem has a
solution. However, once again, this is useless with regard to the aim of finding
ways to generate primes efficiently.

There are ingenious “formulas” for the primes. Many of these require
knowledge of the first (n − 1) primes to produce the nth prime, and none
of them seem to be computationally useful. We will prove one striking result
of this kind here, and two further results in Exercise 1.24 on p. 33 and in
Exercise 8.9 on p. 163. The result proved here rests on Bertrand’s Postulate,
which is the first of many results that say something about how the prime
numbers appear and how the next prime compares in size with the previous
prime. The arguments below are intricate but elementary, and the basic con-
tradiction arrived at in the proof of Theorem 1.9 is similar to one that will be
used to prove Zsigmondy’s Theorem (Theorem 1.15) in Section 8.3.1.

We need a lemma that says something about the growth in the product of
all the primes up to n. As usual p will be used to denote a prime.

Lemma 1.8. For any n � 1,∑
p�n

log p < 2n log 2. (1.11)

2 Diophantine problems are discussed in Chapter 2. The term is used to denote
problems involving equations in which only integer solutions are sought.
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Proof. Let

M =
(

2m + 1
m

)
=

(2m + 1)(2m) · · · (m + 2)
m!

.

This is a binomial coefficient, so it is an integer (see Exercise 1.10 for a stronger
form of this). The coefficient M appears twice in the binomial expansion
of 22m+1 = (1+1)2m+1, so M < 22m. If m+1 < p � 2m+1 for some prime p,
then p divides the numerator of M but does not divide the denominator, so∏

p∈A(m)

p divides M,

where A(m) denotes the set of primes p with m + 1 < p � 2m + 1. It follows
that ∑

p�2m+1

log p −
∑

p�m+1

log p =
∑

p∈A(m)

log p � log M < 2m log 2. (1.12)

We now prove Equation (1.11) by induction. It holds for n � 2, so suppose it
holds for all n � k − 1. If k is even, then∑

p�k

log p =
∑

p�k−1

log p < 2(k − 1) log 2 < 2k log 2

by the inductive hypothesis. If k is odd, write k = 2m + 1 and then∑
p�2m+1

log p =
∑

p�2m+1

log p −
∑

p�m+1

log p +
∑

p�m+1

log p

< 2m log 2 + 2(m + 1) log 2
= 2(2m + 1) log 2 = 2k log 2,

since m + 1 < k. Thus the inequality (1.11) holds for all n by induction. �

Theorem 1.9. [Bertrand’s Postulate] If n � 1, then there is at least one
prime p with the property that

n < p � 2n. (1.13)

Proof. For any real number x, let 	x
 denote the integer part of x. Thus 	x

is the greatest integer less than or equal to x. Let p be any prime. Then⌊

n

p

⌋
+
⌊

n

p2

⌋
+
⌊

n

p3

⌋
+ · · ·

is the largest power of p dividing n! (see Exercise 8.7(a) on p. 162). Fix n � 1
and let
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N =
∏

p�2n

pk(p)

be the prime decomposition of N = (2n)!/(n!)2. The number of times that
a given prime p divides N is the difference between the number of times it
divides (2n)! and (n!)2, so

k(p) =
∞∑

m=1

(⌊
2n

pm

⌋
− 2

⌊
n

pm

⌋)
, (1.14)

and each of the terms in the sum is either 0 or 1, depending on whether 	 2n
pm 


is odd or even. If pm > 2n the term is certainly 0, so

k(p) �
⌊

log 2n

log p

⌋
. (1.15)

Now the proof of the theorem proceeds by a contradiction argument. As-
sume there is some n � 1 for which there is no prime satisfying the inequal-
ity (1.13), and let p be a prime factor of N = (2n)!/(n!)2. Thus p < n by our
assumption, and k(p) � 1. If

2
3
n < p � n

then
2p � 2n < 3p and p2 >

4
9
n2 > 2n,

so Equation (1.14) becomes

k(p) =
⌊

2n

p

⌋
− 2

⌊
n

p

⌋
= 2 − 2 = 0.

We deduce that p � 2
3n for every prime factor p of N . It follows that∑
p|N

log p �
∑

p�2n/3

log p � 4
3
n log 2 (1.16)

by Lemma 1.8. Now if k(p) � 2 then by the bound (1.15),

2 log p � k(p) log p � log 2n,

so p �
√

2n and thus there are at most
√

2n possible values of p. Hence∑
k(p)�2

k(p) log p �
√

2n log 2n.

Together with the inequality (1.16), this shows that
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log N �
∑

k(p)=1

log p +
∑

k(p)�2

k(p) log p

�
∑
p|N

log p +
√

2n log 2n

� 4
3

log 2 +
√

2n log 2n. (1.17)

Now N is the largest coefficient (namely the middle one) in the binomial
expansion of

22n = (1 + 1)2n,

so

22n = 2 +
(

2n

1

)
+
(

2n

2

)
+· · · +

(
2n

2n − 1

)
� 2nN.

Substituting this estimate into the inequality (1.17) gives

2n log 2 � 4
3
n log 2 + log 2n +

√
2n log 2n. (1.18)

It is clear that the inequality (1.18) cannot hold for large values of n; a simple
calculation shows that (1.18) implies that n does not exceed 500.

It follows that if n > 500, then there is a prime satisfying the inequal-
ity (1.13). A calculation confirms that (1.13) also holds for all n � 500, com-
pleting the proof of the theorem. �

Notice that a consequence of Equation (1.13) is that if the primes are listed
in order as p1, p2, . . . , then

pn+1 < 2pn for all n � 1. (1.19)

It is clear that Theorem 1.9 gives another proof that there must be in-
finitely many primes. In each interval of the form (n, 2n] there is at least one.
This gives us a bound for the prime counting function

π(X) = |{p � X | p ∈ P}.

The proof of Euclid’s Theorem 1.2 already says a little more than the purely
qualitative statement that π(X) → ∞ as X → ∞: from the proof of Theo-
rem 1.2 we see that

pn+1 � p1p2 · · · pn + 1.

This tells us something about π(X). Define a sequence (un) by setting u1 = 2
and un+1 = u1 · · ·un + 1 for n � 1. Then

π(X) � min{n | un � X}.

This is an extremely slowly growing sequence, and the bound obtained
for π(X) is very far from the truth.
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Theorem 1.9 says more: there are at least N primes in the interval

(1, 2N ] = (1, 2] ∪ (2, 4] ∪ (4, 8] ∪ · · · ∪ (2N−1, 2N ],

so π(2N ) > N . It follows that π(X) is larger than C log(X) for some pos-
itive constant C, infinitely often. Something closer to the truth about the
asymptotic behavior of π(X) is the Prime Number Theorem (Theorem 8.1).
Finding more refined estimates for π(X) generally involves deep problems in
analytic number theory. An exception is the result of Tchebychef, described in
Exercise 8.7 on p. 162, which uses elementary methods to give better bounds
for π(X).

Bertrand’s Postulate is enough to exhibit a striking but impractical for-
mula for the primes. More importantly, the bound (1.13) immediately moti-
vates the question of whether the upper estimate 2n could be reduced, perhaps
for all large n only, and this is the subject of ongoing research.

Corollary 1.10. There exists a real number θ with the property that⌊
222···

θ ⌋

is a prime number for any number of iterations of the exponential.

Proof. Let q1 be any prime, and choose a sequence of primes (qn) with the
property that

2qn < qn+1 < 2qn+1. (1.20)

This is possible by Bertrand’s Postulate. Now define functions f (1), f (2), . . .
by f (1)(x) = log2(x) and f (n+1)(x) = log2(f (n)(x)) for n � 1. Define se-
quences (un) and (vn) by

un = f (n)(qn) and vn = f (n)(qn + 1).

By the inequality (1.20),

qn < f (1)(qn+1) < f (1)(qn+1 + 1) < qn + 1,

so by applying the increasing function f (n) we have

un < un+1 < vn+1 < vn.

It follows that the sequence (un) is increasing and bounded above, so it con-
verges. Let

θ = lim
n→∞ un.

Define functions g(n) by g(1)(x) = 2x and g(n+1)(x) = 2g(n)(x) for all n � 1.
Then

g(n)(un) < g(n)(θ) < g(n)(vn),
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so
qn < g(n)(θ) < qn + 1 for all n � 1

as required. �

Exercise 1.7. [Mills] A deep result of Ingham improves Equation (1.13) to
say that there is a constant C such that

pn+1 − pn < Cp5/8
n .

Assuming this result, modify the proof of Corollary 1.10 to show that there
is a real number θ with the property that 	θ3n
 is a prime for all n � 1.

Exercise 1.8. [Richert] Use Theorem 1.9 to show that every integer greater
than 6 is a sum of distinct primes. (Hint: Show this is true for the numbers 7
to 19, then use Theorem 1.9 to see that we can keep adding new primes to
the set of sums obtained without missing out any integers).

Exercise 1.9. [Dressler] (a) Modify the proof of Theorem 1.9 to show that

pn+1 < 2pn − 10 for all n > 6.

(Hint: Assume there is an integer n � 1000 for which no prime p has the
property n < p < 2n − 10, and consider the primes dividing N =

(2n−10
n−10

)
.)

(b)*Use your result to prove that every positive integer apart from 1, 2, 4, 6
and 9 can be written as a sum of distinct odd primes.

1.3.2 Mersenne Primes

Mersenne3 noticed that 22 − 1 = 3, 23 − 1 = 7, 25 − 1 = 31, and 27 − 1 = 127
are all primes. He suggested on the basis of experiments that 2p − 1 would be
a prime whenever p is a prime that exceeds by 3 or less an even power of 2.

Lemma 1.11. If 2n − 1 is prime, then n is prime.

Proof. We prove the contrapositive statement that n being composite
forces 2n − 1 to be composite. If n = ab with a, b > 1, then

2n − 1 = (2a − 1)(2n−a + 2n−2a + · · · + 2a + 1),

so 2n − 1 is composite. �
The list of primes noticed by Mersenne does not continue uninterrupted

because 211−1 is composite. A prime of the form 2p−1 is known as a Mersenne
3 Marin Mersenne (1588–1648) was a French friar in the religious order of the

Minims. He defended Descartes and Galileo against their theological critics and
worked to undermine alchemy and astrology. He wrote on music as part of his
studies in physics and mathematics.
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prime. The next few Mersenne primes are 213 − 1, 217 − 1 and 219 − 1. It is
not known if there are infinitely many Mersenne primes. That 219 −1 is prime
was known to Cataldi in 1588, and this was the largest known prime for 150
years. Fermat discovered that 223 −1 is not prime in 1640; in 1732 Euler knew
that 229 − 1 is not prime but that 231 − 1 is prime.

It is worth pausing to say something about how this knowledge, which
potentially requires the factorization of ten-digit numbers, accrued. Generally
this involved a mixture of improving technique with congruences, some guile,
and some heroic calculations. The first of several theoretical advances was
discovered by Fermat and is now known as Fermat’s Little Theorem.

Theorem 1.12. [Fermat’s Little Theorem] For any prime p and any
integer a,

ap ≡ a (mod p).

In keeping with our philosophy about differing approaches, we present two
proofs of Fermat’s Little Theorem.
Combinatorial Proof. It is enough to prove the statement when a is a
positive integer, so we use induction. The result is true for a = 1 because
both sides are 1. Assume it is true for a = b. Now

(b + 1)p = bp + pbp−1 + · · · + pb + 1 =
p∑

j=0

(
p

j

)
bj

by the Binomial Theorem. For 0 < j < p,
(
p
j

)
= p!

j!(p−j)! has a numerator
divisible by p and denominator not divisible by p; the Fundamental Theorem
of Arithmetic then shows that

(
p
j

)
is divisible by p for j = 1, . . . , p − 1. So

(b + 1)p ≡ bp + 1 ≡ b + 1 (mod p)

by the inductive hypothesis. Thus Fermat’s Little Theorem is proved. �

Exercise 1.10. Prove that the product of any n successive integers is divisible
by n!.

A second, and often more useful, version of Fermat’s Little Theorem can
be written as follows. Integers a and b are said to be coprime if gcd(a, b) = 1.
For all a ∈ Z that are coprime to p,

ap−1 ≡ 1 (mod p). (1.21)

This form is easily seen to be equivalent to Theorem 1.12 as follows:

ap − a = a(ap−1 − 1),

so when p does not divide a the Fundamental Theorem of Arithmetic shows
that p

∣∣(ap−1 − 1) if and only if p
∣∣(ap − a).
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The second proof of Fermat’s Little Theorem proves the congruence (1.21)
and uses slightly more sophisticated ideas from group theory. The virtue of
this second proof is that it is quicker and (as we shall see) is better suited
to generalization. It does require some properties of modular arithmetic (see
Exercise 1.28 on p. 38).
Proof Using Group Theory. Work in the group G = (Z/pZ)∗ of nonzero
residues modulo p under multiplication. The residue of a generates a cyclic
subgroup of G whose order must divide that of G by Lagrange’s Theorem.
Since the order of G is (p − 1), we deduce Equation (1.21). �

This proof is something of an anachronism: Lagrange’s Theorem gener-
alized Fermat’s Little Theorem. However, thinking of residues using group
theory is a powerful tool and gives rise to many more results, so it is useful to
begin thinking in those terms now. Exercise 3.6 on p. 62 gives a good example
where a proof using group theory can be favourably compared with a proof
that only uses congruences.

Exercise 1.11. Fermat’s Little Theorem says that, for any prime p, 2p−1 − 1
is divisible by p. It sometimes happens that 2p−1−1 is divisible by p2. Find all
the primes p with this property for p < 106. Such primes are called Wieferich
primes, and it is not known if there are infinitely many of them.

Exercise 1.12. *A pair of congruences that arises in the Catalan problem
(see p. 57) for odd primes p, q is

pq−1 ≡ 1 (mod q2) and qp−1 ≡ 1 (mod p2). (1.22)

A pair of odd primes satisfying Equation (1.22) is called a Wieferich pair.
Find all the Wieferich pairs with p, q < 104.

Exercise 1.13. An integer n is called a perfect number if it is equal to the
sum of its proper divisors. Thus 6 = 1 + 2 + 3 is a perfect number.
(a) If q = 2p − 1 is a Mersenne prime, prove that 2p−1q is a perfect number.
(b) Prove that if n is an even perfect number, then n has the form 2p−1(2p−1)
for some prime of the form 2p − 1.

It is not known if there are any odd perfect numbers, but there are certainly
no odd perfect numbers smaller than 10400.

Write Mn = 2n − 1 for the nth Mersenne number. The Mersenne numbers
have special properties that make them particularly suitable for primality
testing. The next result is the first of a series of results showing that divisors
of Mn are quite prescribed when n is prime.

Lemma 1.13. Suppose p is a prime and q is a nontrivial prime divisor of Mp.
Then q ≡ 1 modulo p.
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Again, we give two proofs.
Proof Using the Euclidean Algorithm. The condition that q di-
vides Mp amounts to

2p ≡ 1 (mod q).

By Fermat’s Little Theorem, 2q−1 ≡ 1 modulo q. Let d = gcd(p, q − 1).
If d = p, then p

∣∣(q − 1) as required. The only other possibility is d = 1 since p
is prime. By Theorem 1.23 (see p. 35), in this case there are integers a and b
with 1 = pa + (q − 1)b. Notice that one of a and b must be negative. Now

2 ≡ 21 ≡ 2pa+(q−1)b ≡ (2p)a(2(q−1))b ≡ 1a1b ≡ 1 (mod q), (1.23)

which is impossible as q > 1, so the result is proved. �
In the preceding argument, we have made use of negative exponents of

expressions modulo q, but only in the form

1−a ≡ 1 (mod q) for a > 0. (1.24)

Proof Using Group Theory. Work in the group G of nonzero residues
modulo q. In this group 2 generates a cyclic subgroup whose order divides p
since 2p − 1 ≡ 0 modulo q. Since 2 is not the identity and p is prime, the
order of 2 must be p. Again, by Lagrange’s Theorem, this order must divide
the order of the group G, which is (q − 1). �

Example 1.14. Lemma 1.13 is a significant help in factorizing Mn. To see how
this works, we present Fermat’s proof from 1640 that 223 −1 is not prime. If q
is a prime dividing 223 − 1, then q ≡ 1 modulo 23. Now 23n + 1 is a prime
smaller than

√
223 − 1 only for

n = 2, 12, 20, 26, 30, 36, 42, 44, 50, 56, 60, 62, 72, 84, 86, 102, 104, 110.

Trial division shows that M23 is divisible by the first of the resulting num-
bers, 47. In general, there is no reason to expect the smallest possible candidate
to be a divisor, but even if the largest were the first such divisor, only 18 trial
divisions are involved.

In 1876, Lucas discovered a test for proving the primality of Mersenne
numbers. Using this test, he proved that

2127 − 1 = 170141183460469231731687303715884105727

is prime, but 267 − 1 is not. This disproved the suggestion of Mersenne.
The latter number occupies a special place in the history (and folklore) of

mathematics. First, Lucas showed it is not prime but was not able to exhibit a
nontrivial factor, which might seem a remarkable idea. In fact, it is something
we will encounter again in the computational number theory sections. Second,
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this number was the subject of a famous talk given by Prof. F. N. Cole to
the American Mathematical Society in 1903 entitled “On the Factorization
of Large Numbers.” On one blackboard, he wrote out the decimal expansion
of 267 − 1 and on another he proceeded to compute the product of 193707721
and 761838257287, thereby showing them to be equal. The legend goes that
after this silent lecture he sat down to “prolonged applause.”

The specific arithmetic properties of Mersenne numbers mean that results
on the primality of later terms in the sequence sometimes predated results on
earlier terms. For example, 2127−1 was shown to be prime in 1876 while 289−1
and 2107 − 1 were shown to be prime in 1914.

Exercise 1.14. *[Lucas–Lehmer Test] Define an integer sequence by

S1 = 4 and Sn+1 = S2
n − 2 for n � 2.

Let p be an odd prime. Prove that Mp = 2p − 1 is a prime if and only
if Sp−1 ≡ 0 modulo Mp.

1.3.3 Zsigmondy’s Theorem

Although the proof of the conjecture that there are infinitely many Mersenne
primes seems a long way off, it is known that the sequence starts to produce
new prime factors very quickly. A prime p is a primitive divisor of Mn if p
divides Mn but does not divide Mm for any m < n. Table 1.2 shows the prime
factorization of Mn for 2 � n � 24, with primitive divisors shown in bold.

The pattern that seems to emerge from Table 1.2 turns out to reflect
something genuine. Sequences such as the Mersenne sequence, after a few
initial terms, always have primitive divisors.

Theorem 1.15. [Zsigmondy] Let Mn = 2n−1. Then for every n = 6, n > 1,
the term Mn has a primitive divisor.

As seen in Table 1.2, M6 does not have a primitive divisor, so this result
is optimal. The proof of Theorem 1.15 is presented in Section 8.3.1 on p. 167,
after we have proved the Möbius inversion formula (Theorem 8.15). A basic
result that will be needed for the proof can be proved now, using the Binomial
Theorem. Notice that this result, proved as the next exercise, already shows
that the divisors of the sequence (Mn) have a special structure.

Exercise 1.15. Let p denote a prime, and for any integer N , define ordp(N)
to be the exact power of p that divides N . Thus ordp(N) = a means pa

∣∣N
but pa+1  ∣∣ N .
(a) Prove that ordp behaves like a logarithm in the sense that

ordp(xy) = ordp(x) + ordp(y)

for all integers x, y.
(b) Prove that if p

∣∣Mn then ordp(Mkn) = ordp(Mn) + ordp(k).
(c) Deduce that gcd(Mn, Mm) = Mgcd(n,m) for all m, n.
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Table 1.2. Primitive divisors of (Mn).

n Mn Factorization
2 3 3
3 7 7
4 15 3 · 5
5 31 31
6 63 32 · 7
7 127 127
8 255 3 · 5 · 17
9 511 7 · 73

10 1023 3 · 11 · 31
11 2047 23 · 89
12 4095 3 · 5 · 7 · 13
13 8191 8191
14 16383 3 · 43 · 127
15 32767 7 · 31 · 151
16 65535 3 · 5 · 17 · 257
17 131071 131071
18 262143 33 · 7 · 19 · 73
19 524287 524287
20 1048575 3 · 52 · 11 · 31 · 41
21 2097151 7 · 127 · 337
22 4194303 3 · 23 · 89 · 683
23 8388607 47 · 178481
24 16777215 3 · 5 · 7 · 13 · 17 · 241

Exercise 1.16. (a) Show that if q is a prime then every prime divisor of Mq

is a primitive divisor.
(b) If Mn does not have a primitive divisor show that Mn divides the quantity

n
∏
p|n,
p<n

Mn/p.

(c) Deduce that for n > 6, every term Mn has a primitive divisor if n has only
two distinct prime divisors. (Hint: take logarithms of the quantities in (b) and
compare the growth rates of both sides.)
(d) What can you deduce if n has three distinct prime divisors?

Zsigmondy’s Theorem holds in greater generality, though we will not prove
the following result here.

Theorem 1.16. [Zsigmondy] Let an = cn − dn, where c > d are positive
coprime integers. Then an always has a primitive divisor unless

(1) c = 2, d = 1 and n = 6; or
(2) c + d = 2k and n = 2.
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Exercise 1.17. Find some nontrivial examples of case (2) of the theorem.

A more general result is considered in Exercise 8.19 on p. 169.

Exercise 1.18. Prove that the sequence (un) does not satisfy a Zsigmondy
Theorem in each of the following cases. This means that for every N there is
a term un, n > N , which does not have a primitive divisor.
(a) un = an + b for integers a and b;
(b) un = n2 + an + b for integers a and b with the property that the zeros
of x2 + ax + b are integers;
(c)*un = n2 + an + b for integers a and b.

Exercise 1.19. *Can any polynomial un = nd + ad−1n
d−1 + · · · + a0 for in-

tegers a0, . . . , ad−1 have the property that the sequence (un) satisfies a Zsig-
mondy Theorem?

1.3.4 Mersenne Primes in the Computer Age

The arrival of electronic computers extended the limits of large Mersenne
prime-hunting dramatically.

Table 1.3 is a short list showing how the size of the largest known Mersenne
prime has grown over recent years; #Mp denotes the number of decimal digits
in Mp. In 1978, Nickol and Noll were 18-year-old students. We do not distin-
guish here between a Mersenne prime that is the largest known at the time
from a Mersenne prime for which all smaller Mersenne primes are known;
see the references for a more detailed discussion. In Table 1.3, (G) denotes
GIMPS and (P) denotes PrimeNet; these are distributed computer searches
using idle time on many thousands of computers all over the world. Because
of the special properties of Mersenne numbers (and related numbers of special
shape), it has usually been the case that the largest explicitly known prime
number is a Mersenne prime.

1.4 Fermat Numbers

Fermat noticed that the expression Fn = 22n

+ 1 takes prime values for the
first few values of n:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537.

He believed the sequence might always take prime values. Euler in 1732 gave
the first counterexample, when he showed that 641

∣∣F5.
Euler, in common with Fermat and many others, was able to perform

these impressive calculations through a good use of technique to minimize
the amount of calculation required. Since Euler’s time, many other Fermat
numbers have been investigated and shown to be composite. No prime values
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Table 1.3. Largest known prime values of Mp (from Caldwell’s Prime Pages [25]).

p #Mp Date Discoverer
17 6 1588 Cataldi
19 6 1588 Cataldi
31 10 1772 Euler
61 19 1883 Pervushin
89 27 1911 Powers

107 33 1914 Powers
127 39 1876 Lucas
521 157 1952 Robinson
607 183 1952 Robinson

1279 386 1952 Robinson
2203 664 1952 Robinson
2281 687 1952 Robinson
3217 969 1957 Riesel
4253 1281 1961 Hurwitz
4423 1332 1961 Hurwitz
9689 2917 1963 Gillies
9941 2993 1963 Gillies

11213 3376 1963 Gillies
19937 6002 1971 Tuckerman
21701 6533 1978 Nickol and Noll
23209 6987 1979 Noll
44497 13395 1979 Nelson and Slowinski
86243 25962 1982 Slowinski

110503 33265 1988 Colquitt and Welsh
132049 39751 1983 Slowinski
216091 65050 1985 Slowinski
756839 227832 1992 Slowinski and Gage
859433 258716 1994 Slowinski and Gage

1257787 378632 1996 Slowinski and Gage
1398269 420921 1996 Armengaud, Woltman et al. (G)
2976221 895932 1997 Spence, Woltman et al. (G)
3021377 909526 1998 Clarkson, Woltman, Kurowski et al. (G, P)
6972593 2098960 1999 Hajratwala, Woltman, Kurowski et al. (G, P)

13466917 4053946 2001 Cameron, Woltman, Kurowski et al. (G, P)
20996011 6320430 2003 Shafer, Woltman, Kurowski et al. (G, P)
24036583 7235733 2004 Findley, Woltman, Kurowski et al. (G)

of Fn with n > 4 have been discovered, and it is generally expected that only
finitely many terms of the sequence (Fn) are prime.

To begin, we return to Euler’s result that 641 divides F5. First, notice
that 640 = 5 · 27 ≡ −1 modulo 641 so working modulo 641,

1 = (−1)4 ≡ (5 · 27)4 = 54 · 228.

Now 54 = 625 ≡ −16 modulo 641 and 16 = 24. Hence
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1 ≡ −232 ≡ −225
(mod 641).

Of course, this elegant argument is useful only once we suspect that 641
is a factor of F5. Euler also used some cunning to reach that point.

Lemma 1.17. Suppose p is a prime with p
∣∣Fn. Then p = 2n+1k + 1 for

some k ∈ N.

Example 1.18. When n = 5, Lemma 1.17 shows that if p is a prime dividing F5,
then p = 26k + 1 = 64k + 1 for some k. Thus the list of possible divisors is
greatly reduced. We only have to test F5 for divisibility by

65, 129, 193, 257, 321, 385, 449, 513, 577, 641, . . . ,

of which 65, 129, 321, 385, 513, . . . are not primes. Therefore we only have
to test 193, 257, 449, 577, 641, . . . and so on. At the fifth attempt, we find
that 641

∣∣F5.

Proof of Lemma 1.17. Suppose p is a prime with p
∣∣Fn, so 22n ≡ −1

modulo p and p is odd. Hence

22n+1
= (22n

)2 ≡ (−1)2 ≡ 1 (mod p).

Let d = gcd(2n+1, p − 1), and write d = 2n+1a + (p − 1)b for integers a and b
using Theorem 1.23. Just as in Equation (1.23) one of a and b will be negative,
so we again use Equation (1.24) to argue that

2d = 22n+1a+(p−1)b ≡ (22n+1
)a(2p−1)b ≡ 1 (mod p).

Since d
∣∣2n+1, d = 2c for some 0 � c � n + 1 so

22c

= 2d ≡ 1 (mod p).

However, 22n ≡ −1 modulo p and −1 ≡ 1 modulo p, so the smallest possibility
for c is (n+1). Hence d = 2n+1. On the other hand, d

∣∣(p−1) so p−1 = k2n+1

as claimed. �

Exercise 1.20. Strengthen Lemma 1.17 by showing that any prime p divid-
ing Fn must have the form 2n+2k + 1 for some k ∈ N.

1.5 Primality Testing

We have covered enough ground to take a first look at the challenges thrown
up by primality testing. Given a small integer, one can determine if it is
prime by testing for divisibility by known small primes. This method becomes
totally unfeasible very quickly. We are really trying to factorize. The ability
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to rapidly factorize large integers remains the Holy Grail of computational
number theory. Later we will look at some more sophisticated techniques and
estimate the range of integers for which they are applicable.

For now, we concentrate on properties of primes that can be used to help
determine primality. Fermat’s Little Theorem is an example, although it does
not give a necessary and sufficient condition for primality, just a necessary one.
The next result does give a necessary and sufficient condition; it is known as
Wilson’s Theorem because of a remark to this effect allegedly made by John
Wilson in 1770 to the mathematician Edward Waring. An early proof was
published by Lagrange in 1772. The theorem first seems to have been noted
by al-Haytham4 some 750 years before Wilson.

Theorem 1.19. An integer n > 1 is prime if and only if

(n − 1)! ≡ −1 (mod n).

Proof of ‘only if’ direction. We prove that the congruence is satisfied
when n is prime and leave the converse as an exercise. Assume that n = p is
an odd prime. (The congruence is clear for n = 2.)

Each of the integers 1 < a < p − 1 has a unique multiplicative inverse
distinct from a modulo p (see Corollary 1.25). Uniqueness is obvious; for
distinctness, note that a2 ≡ 1 modulo p implies p

∣∣(a+1)(a−1), forcing a ≡ ±1
modulo p by primality. Thus in the product

(p − 1)! = (p − 1)(p − 2) · · · 3 · 2 · 1,

all the terms cancel out modulo p except the first and the last. Their product
is clearly −1 modulo p. �

Exercise 1.21. Prove the converse: If n > 1 and (n − 1)! ≡ −1 modulo n,
then n is prime.

Exercise 1.22. [Gauss] Prove the following generalization of Theorem 1.19.
Let

Pn =
∏

m<n,
gcd(m,n)=1

m

be the product of all positive integers less than n and coprime to n. Then Pn+1
is divisible by n if n is equal to 4, pk, or 2pk for some odd prime p, and Pn −1
is divisible by n if n is not of that form.

4 Abu Ali al-Hasan ibn al-Haytham (964–1040) lived in Persia and Egypt. He is
most famous for Alhazen’s Problem: Find the point on a spherical mirror where
a light will be reflected to an observer. In number theory, in addition to proving
what we often call Wilson’s Theorem, al-Haytham worked on perfect numbers
(see Exercise 1.13).
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Exercise 1.23. [Clement] (a) Use al-Haytham’s Theorem (Theorem 1.19)
to prove that, for n > 1, n and n + 2 are both prime if and only if

4
(
(n − 1)! + 1

)
+ n ≡ 0 (mod n(n + 2)).

(b) Prove that, for n > 13, the triple n, n + 2, and n + 6 are all prime if and
only if

4320
(
4
(
(n − 1)! + 1

)
+ n

)
+ 361n(n + 2) ≡ 0 mod

(
n(n + 2)(n + 6)

)
.

(c) Find a similar characterization of prime triples of the form n, n + 4,
and n + 6.

Primes p for which p + 2 is also a prime are called twin primes, and it
is a long-standing conjecture that there are infinitely many twin primes. A
remarkable result of Brun from 1919 is that the reciprocals of the twin primes
(whether there are infinitely many or not) are summable:∑

p,p+2∈P

1
p

= B < ∞. (1.25)

Numerical estimation of Brun’s constant B is very difficult.

Exercise 1.24. Theorem 1.19 gives another ‘formula’ for the primes. Show
that (n−2)! is congruent to 1 or 0 modulo n depending on whether n is prime
or not, for n � 3.
(a) Deduce that the prime counting function π(X) = |{p ∈ P | p � X}| may
be written

π(X) = 1 +
X∑

j=3

(
(j − 2)! − j

⌊
(j − 2)!

j

⌋)
, X � 3,

with π(1) = 0, π(2) = 1.
(b) Define a function f by f(x, x) = 0 and

f(x, y) =
1
2

(
1 +

x − y

|x − y|
)

for x = y.

Use Theorem 1.9 to prove that

pn = 1 +
2n∑

j=1

f(n, π(j)).

In principle, Theorem 1.19 seems to offer a general primality test because
the condition is necessary and sufficient. The problem is that in practice it
is impossible to compute (n − 1)! modulo n in a reasonable amount of time
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for any integer that is not quite small. In Chapter 12 we will seek to give a
better understanding of what counts as “small” or “large” in terms of modern
computing.

Fermat’s Little Theorem offers another hope. Taking a = 2, Fermat’s Little
Theorem implies that

2p−1 ≡ 1 (mod p) whenever p is prime. (1.26)

At various times in history, it has been thought that a kind of converse might
be true: If n is odd and 2n−1 ≡ 1 modulo n, might it follow that n is prime?
Calculations tend to support this, and for n < 341 this does indeed successfully
detect primality.

Example 1.20. Testing the congruence 2n−1 ≡ 1 modulo n fails to detect the
fact that n = 341 = 11 · 31 is composite. By Fermat’s Little Theorem, 210 ≡ 1
modulo 11 so 2340 ≡ 134 ≡ 1 modulo 11. Also 25 = 32 ≡ 1 modulo 31, so

2340 = (25)68 ≡ 168 = 1 (mod 31).

Thus 2340 − 1 is divisible by the coprime numbers 11 and 31, and hence by
their product 341, so 2340 ≡ 1 modulo 341.

However, Fermat’s Little Theorem says more than Equation (1.26): It gives
the congruence

ap−1 ≡ 1 (mod p)

for any base a, not just a = 2. Taking a = 3 in Example 1.20, we quickly find

3340 ≡ 56 (mod 341),

which contradicts Fermat’s Little Theorem with a = 3, showing that 341
cannot be prime. Notice the recurrence of a phenomenon encountered before:
Using a = 3, we have shown that a number is not prime without exhibiting a
nontrivial factor.

This method suggests the following as a primality test. Given an integer n,
choose numbers a at random with 1 < a < n and test to see if an−1 ≡ 1
modulo n. If not, then n is definitely composite. If the congruence is satisfied
for several such a, we might view this as compelling evidence that n must be
prime. Unfortunately, this also fails as a primality test.

Exercise 1.25. Prove that n = 561 is a composite number that satisfies Fer-
mat’s Little Theorem for every possible base by showing that a560 ≡ 1 mod-
ulo 561 for every a, 1 < a < n with gcd(a, 561) = 1. (Hint: Use Fermat’s Little
Theorem on each of the factors 3, 11, and 17 of 561.)

A composite integer that satisfies the congruence of Fermat’s Little Theo-
rem for all bases coprime to itself is known as a Carmichael number ; these will
be discussed in more detail in Section 12.5. It was not known whether there
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are infinitely many Carmichael numbers until 1994, when Alford, Granville,
and Pomerance not only proved that there are infinitely many but gave some
measure of how many there are asymptotically. The existence of infinitely
many Carmichael numbers renders the test based on Fermat’s Little Theo-
rem test too unreliable. Later, we will see however that a more sophisticated
version is salvageable as a primality test.

1.6 Proving the Fundamental Theorem of Arithmetic

We uncover Euclid’s real genius once we try to prove the Fundamental Theo-
rem of Arithmetic. There are two parts to it: existence and uniqueness. The ex-
istence part is not difficult. Let n > 1 be an integer, and choose r with 2r > n.
If n itself is not divisible by any a with 1 < a < n, then nothing else needs
to be said. Otherwise, we can write n = ab with 1 < a, b < n. Again, if a
and b cannot be factorized, further then we are done. If this is not the case
then at least one of them can be factorized. Once we have done this r times,
we have n = a1 · · · ar with each 1 < ai < n. This implies n � 2r, giving a
contradiction. Thus n must be a product of no more than r prime factors.

It is when we come to the uniqueness part of the proof that we uncover a
subtlety – namely, that the definition of prime as an irreducible element is not
really adequate to prove the Fundamental Theorem of Arithmetic. Suppose
we try to argue as follows: Consider two factorizations for n into primes, say

p1 · · · pr = n = q1 · · · qs.

We would like to say that because p1 divides the right-hand side, it must
divide one of the qi. However, if we are working with the definition of prime
as irreducible, then we need a result that tells us that being irreducible forces
this divisibility property. Such a result may be found using the Euclidean
Algorithm.

Later, we will see examples in rings that are closely related to Z whose
elements have genuinely different factorizations into irreducibles.

Exercise 1.26. Let

A = {n ∈ N | n ≡ 1 (mod 4)},

and call n = 1 an A-prime if the only divisors of n in A are 1 and n.
(a) Show that every element of A except 1 factorizes as a finite product of A-
primes.
(b) Show that this factorization into A-primes is not unique.

1.6.1 The Euclidean Algorithm

Given a, b > 0 in Z, we can always find q and r with a = bq + r and 0 � r < b.
Indeed, for q we can simply take the integer part 	a/b
 of a/b and then show
that by defining r = a − bq we must have 0 � r < b.
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Something very interesting happens when we iterate this process. It will
help to define q = q1 and r = r1 and continue to find quotients and remainders
as follows:

a = bq1 + r1, 0 � r1 < b
b = r1q2 + r2, 0 � r2 < r1

...
...

rn−3 = rn−2qn−1 + rn−1, 0 � rn−1 < rn−2
rn−2 = rn−1qn + rn, 0 � rn < rn−1
rn−1 = rnqn+1 + 0.

The sequence of remainders is decreasing and each term is nonnegative, so the
sequence must terminate. We have written rn for the last nonzero remainder,
so rn

∣∣rn−1. We claim that rn is the greatest common divisor of a and b.

Example 1.21. Let a = 17 and b = 11. Then the Euclidean Algorithm gives
the equations

17 = 11 · 1 + 6,

11 = 6 · 1 + 5,

6 = 5 · 1 + 1,

5 = 1 · 5 + 0.

The last nonzero remainder is the greatest common divisor of 17 and 11, which
is clearly 1.

To prove that rn = gcd(a, b), we need a better notion of greatest common
divisor than the intuitive one.

Definition 1.22. If a and b in Z are not both zero, d is said to be a greatest
common divisor of a and b if

(1) d
∣∣a and d

∣∣b; and
(2) if d′ is any number with d′∣∣a and d′∣∣b, then d′∣∣d.

The first condition says d is a common divisor of a and b, while the second
says it is the greatest such divisor.

Note that we say “a” greatest common divisor rather than “the” greatest
common divisor because if d satisfies this condition then −d will also sat-
isfy the definition. If we work in N, then the greatest common divisor will
be unique. The notation gcd(a, b) denotes the unique nonnegative greatest
common divisor of a and b. If gcd(a, b) = 1, then we will call a and b coprime.

Exercise 1.27. Using Definition 1.22, show that rn = gcd(a, b). (Hint: Work
your way up and then down the chain of equations to verify the two proper-
ties.)
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The next result is fundamental to the structure of the integers; it is an
easy consequence of the Euclidean Algorithm and is sometimes referred to as
Bezout’s Lemma.

Theorem 1.23. If d = gcd(a, b) with a, b ∈ Z not both zero, then there are
numbers x, y ∈ Z with

d = ax + by. (1.27)

Proof. The idea is to work your way up the chain of equations in the Eu-
clidean Algorithm, always expressing the remainder in terms of the previous
two remainders. Writing ∗ for an integer, we get

gcd(a, b) = rn = rn−2 − rn−1qn

= rn−2(1 + qnqn−1) − rn−3qn

= rn−3 · ∗ + rn−4 · ∗
...
= b · ∗ + r1 · ∗
= a · ∗ + b · ∗.

�

Example 1.24. Using the equations from Example 1.21 we find that

1 = 6 − 5
= 6 − (11 − 6)
= 2 · 6 − 11
= 2(17 − 11) − 11
= 2 · 17 − 3 · 11.

Corollary 1.25. Let n > 1 and a denote elements of Z. Then a and n are
coprime if and only if there exists x with

ax ≡ 1 (mod n).

That is, gcd(a, n) = 1 if and only if a is invertible modulo n.
Proof. The congruence is equivalent to the existence of an integer y with

ax + ny = 1.

If a and n have a factor in common then that factor will also divide 1, so the
congruence implies a and n are coprime. Conversely, if a and n are coprime
then 1 is a greatest common divisor of a and n so we can use Theorem 1.23
to see that there are integers x and y with ax + ny = 1, which translates into
the congruence. �
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Exercise 1.28. Let p be a prime. Prove that the set (Z/pZ)∗ of nonzero
elements in Z/pZ forms a group under multiplication modulo p.

One of the remarkable things about the Euclidean Algorithm is that it
finds the greatest common divisor of two integers without factorizing either
of them. We will see later how this has been exploited in powerful ways by
computational number theory in recent years.

Exercise 1.29. Prove the Fundamental Theorem of Arithmetic using Theo-
rem 1.23. (Hint: This is done in greater generality on p. 47.)

1.6.2 An Inductive Proof of Theorem 1.1

We wish to prove that any natural number n has a decomposition n = p1 · · · pr

into primes uniquely up to rearrangement of the prime factors.
For n = 2, the theorem is clearly true. We proceed by induction. Suppose

that the Fundamental Theorem of Arithmetic holds for all natural numbers
strictly less than some a > 1. We want to deduce the Fundamental Theorem
of Arithmetic for a. Let

D = {d | d > 1, d
∣∣a}

denote the set of non-identity divisors of a. The set D is nonempty since it
contains a, so it has a smallest element, which we denote p. This smallest
element must be a prime because if it had a nontrivial divisor that would be
a smaller element of D. Thus we have a decomposition

a = pb, p prime, b < a.

Since b < a, by the inductive hypothesis, the Fundamental Theorem of Arith-
metic holds for b, so there is a prime decomposition

b = p1 · · · ps

into primes uniquely up to rearrangement. It follows that

a = p · p1 · · · ps

is a prime decomposition of a, and a has no other prime decomposition in-
volving the prime p.

Suppose that a has another prime decomposition,

a = q1 · · · qr,

in which the prime p does not appear. In particular, q1 = p. Moreover, by the
definition of p, q1 > p since q1 ∈ D, 1 � q1 − p < q1. Let c = q2 · · · qr, and
define

a0 = a − pc = p(b − c) = (q1 − p)c. (1.28)
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Now 1 � a0 < a and the divisors (b − c), (q1 − p), and c are all less than a.
By the inductive hypothesis, the numbers a0, (b − c), (q1 − p), and c all have
unique prime decompositions. By Equation (1.28), the prime p must appear
in any prime decomposition of a0 and therefore (by uniqueness) must also
appear in the decomposition of (q1 − p) or that of c.

Now p cannot appear in a prime decomposition of (q1 − p) because that
would require p

∣∣q1, which is impossible, as p and q1 are distinct primes. Nor
can p appear in a prime decomposition of c = q2 · · · qr by assumption. Thus
the assumption of a second prime decomposition for a leads to a contradiction,
completing the proof of the Fundamental Theorem of Arithmetic.

1.7 Euclid’s Theorem Revisited

In this section, three further proofs of Theorem 1.2 are given, each interesting
and suggestive in its own right.

1.7.1 What Did Euclid Really Prove?

First, we return to the master’s proof. The following is a translation of Euclid’s
proof taken from Joyce’s Web translation of Euclid’s Elements. In Euclid’s
time, numbers were thought of as relatively concrete lengths of line segments.
Thus, for example, a number A measures a number B if a stick of length A
could be used to fit into a stick of length B a whole number of times. In
modern terminology, A divides B. We start with Euclid’s Theorem in (an
approximation of) Euclid’s language:

OÉ prÀtoi ĆrijmoÈ pleÐouc eÊsÈ pantäc toÜ
protejèntoc plăjouc prÿtwn ĆrijmÀn.

A translation of this is the following theorem, which is Proposition 20 of
Book IX in Euclid’s Elements.

Theorem 1.26. The prime numbers are more than any assigned multitude of
prime numbers.

Proof. Let A, B, and C be the assigned prime numbers. I say that there are
more prime numbers than A, B, and C. Take the least number DE measured
by A, B, and C. Add the unit DF to DE.

Then EF is either prime or not.
First, let it be prime. Then the prime numbers A, B, C, and EF have

been found, which are more than A, B, and C.
Next, let EF not be prime. Therefore, it is measured by some prime num-

ber. Let it be measured by the prime number G. I say that G is not the same
as any of the numbers A, B, and C.
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If possible, let it be so.
Now A, B, and C measure DE, and therefore G also measures DE. But

it also measures EF . Therefore G, being a number, measures the remainder,
the unit DF , which is absurd.

Therefore G is not the same as any one of the numbers A, B, and C,
and by hypothesis it is prime. Therefore, the prime numbers A, B, C, and G
have been found, which are more than the assigned multitude of A, B, and C.
Therefore, prime numbers are more than any assigned multitude of prime
numbers. �

There is little between this argument and Euclid’s proof in modern form
on p. 8. Euclid did not have our modern notion of infinity, so he proved that
there are more primes than any prescribed number. He also often stated proofs
using examples (in this case, what he really proves is that there are more than
three primes), but it is clear he understood the general case. It is possible that
part of the reason for this is the notational difficulties involved in dealing with
arbitrarily large finite lists of objects.

1.7.2 A Topological Proof of Theorem 1.2

In 1955, Furstenberg gave a completely different type of proof of the infinitude
of the primes using ideas from topology.
Furstenberg’s Topological Proof of Theorem 1.2. Define a topology
on the integers Z by taking as a basis the arithmetic progressions. For each
prime p, let Sp denote the arithmetic progression pZ. Since

Sp = Z\( (pZ + 1) ∪ · · · ∪ (pZ + (p − 1))
)
,

the set Sp is the complement of an open set, and thus is closed. Let S =
⋃

p Sp

be the union of all the sets Sp as p varies over the primes. If there are only
finitely many primes, then S is a finite union of closed sets, and thus is closed.
However, every integer except ±1 is in some Sp, so the complement of S
is {1,−1}, which is clearly not open. It follows that S cannot be closed and
therefore cannot be a finite union, so there must be infinitely many primes. �

In contrast with the other proofs of Theorem 1.2, this is qualitative – all
it tells us about the prime counting function is that π(X) → ∞ as X → ∞.

1.7.3 Goldbach’s Proof

Goldbach showed how one may use a sequence of integers with the property
that an infinite subsequence are pairwise coprime to give a different proof.
Goldbach’s Proof of Theorem 1.2. We claim that the Fermat num-
bers Fn = 22n

+ 1 are pairwise coprime:.

m = n =⇒ gcd (Fm, Fn) = 1. (1.29)
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The first step is to show by induction that

Fm − 2 = F0F1 · · ·Fm−1 for all m � 1. (1.30)

To see why this is true, first note that F1 − 2 = F0 and assume that Equa-
tion (1.30) holds for m � k. Then

F0F1 · · ·Fk−1Fk = (Fk − 2)Fk

=
(
22k − 1

)(
22k

+ 1
)

= 22k+1 − 1 = Fk+1 − 2,

showing Equation (1.30) by induction. Thus for m > n,

d
∣∣Fm, d

∣∣Fn =⇒ d
∣∣Fm − 2 =⇒ d

∣∣2,

which forces d to be 1 since all the Fn are odd numbers. This proves Equa-
tion (1.29).

This in turn means there must be infinitely many primes. By Theorem 1.1,
each Fn has a prime factor pn, say, and by Equation (1.29) these are all
distinct. �

The proof using Fermat numbers actually does a little more than prove
there are infinitely many primes. It also gives some insight into how many
primes there are that are smaller than a given number. By the time we reach
the number Fn, we must have seen at least n different primes, so

π(X) � 1
log 2

log
(

log(X − 1)
log 2

)
,

which is approximately proportional to log log X. This is far weaker than the
remark on p. 21.

Notes to Chapter 1: The exact history of Theorem 1.1 is not clear, and it is
likely that it was known and used long before it was explicitly stated. The earliest
precise formulation and proof seems to be due to Gauss [67], but it could be argued
that Euclid certainly knew that if a prime p divides a product ab, then p must di-
vide a or b, and that his geometrical formalism and approach to exposition did not
require him to consider products of more than three terms (see Section 1.7.1). Many
of the proofs of Euclid’s Theorem are featured in the Prime Pages Web site [25];
Ribenboim’s book [125] describes no fewer than 11 proofs. Example 1.7 is related to
subtle problems in algebraic number theory; see Ribenboim’s book [125] for a dis-
cussion and detailed references. That the positive values of a polynomial in several
variables could coincide with the primes is essentially a by-product of Matijasevič’s
solution to one of Hilbert’s famous problems. Some of the history and references
and two explicit polynomials are given in accessible form in the paper [85] of Jones,
Sato, Wada and Wiens. The proofs of Lemma 1.8 and Theorem 1.9 are those of
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Erdös [51] and Kalmar, and may be found in Hardy and Wright [75]; that of Corol-
lary 1.10 follows a survey paper of Dudley [46]. Bertrand’s Postulate (Theorem 1.9)
was first proved by Tchebychef [151, Tome I, pp. 49–70, 63]. He also proved that
for any e > 1

5 , there is a prime between x and (1 + e)x for x sufficiently large. The
deep result of Ingham [80] has been improved a great deal — for example, Baker,
Harman and Pintz [8] have shown that there is a prime in the interval [x −x0.525, x]
for x sufficiently large. Exercise 1.7 is due to Mills [107]. Exercise 1.8 comes from a
paper of Richert [127]; Exercise 1.9 from a paper of Dressler [45]. Further material
on Mersenne primes – and on large primes in general – may be found on Caldwell’s
Prime Pages Web site [25]; Table 1.3 is taken from his Web site. A recent account
of the GIMPS record-breaking prime is in Ziegler’s short article [167]. Zsigmondy’s
Theorems 1.15 and 1.16 appeared first in his paper [168]; a more accessible proof
may be found in a short paper by Roitman [132]. Deep recent work has extended this
to a larger class of sequences: Bilu, Hanrot and Voutier have shown that for n > 30
the nth term of any Lucas or Lehmer sequence has a primitive divisor in their
paper [15]. The current status of Fermat numbers and their factorization may be
found on Keller’s Web site [88]. Parts of the intricate connection between group
theory and the origins of modern number theory, and in particular a discussion of
how Gauss used group-theoretic concepts long before they were formalized, are in a
paper of Wußing [164]. For more on the very special numbers found in Exercise 1.11
see Ribenboim’s popular article [123]. The inductive proof of Theorem 1.1 in Sec-
tion 1.6.2 is taken from Hasse’s classic text [76] and is attributed there to Zermelo.
Hasse’s text is also the source of the statement of Euclid’s Theorem in Greek in
Section 1.7.1. We thank David Joyce for permission to use the translation in Sec-
tion 1.7 from his Web site [86]; this Web site is based on several translations of
Euclid’s work, but the primary and most accessible source remains the translation
by Heath [53]. Exercise 1.24 is taken from Hardy and Wright [75]. Furstenberg’s
proof of Euclid’s Theorem appeared in [63]. Exercise 1.23 is taken from Clement’s
paper [31]. Brun’s result in Equation (1.25) appeared originally in his paper [24]; a
modern proof may be found in the book of LeVeque [100]. Finally, we make some
remarks concerning Section 1.7.2. Using topology in this setting might seem odd,
but perhaps Euler’s proof using the harmonic series seemed odd when it first ap-
peared. We don’t wish to stretch the point, but it could just be that Furstenburg’s
proof points forward to new ways of looking at arithmetic in just the same way
as Euler’s did. Profound structures in the integers have certainly been uncovered
using methods from ergodic theory, combinatorics, functional analysis, and Fourier
analysis; see a survey paper of Bergelson [11], the book by Furstenberg [64], and
a new approach in a paper of Gowers [72] for some of these startling results. In a
similar vein, Green and Tao [73] have recently proved the deep result that the primes
contain arbitrarily long arithmetic progressions.




