
3 Nomological machines and the laws they 
produce 

1 Where do laws of nature come from? 

Where do laws of nature come from? This wil1 seem a queer question to a 
post-logical-positivist empiricist. Laws of nature are basic. Other things come 
from, happen on account of, them. I follow Rom Harre 1 in rejecting this 
story. It is capacities that are basic, and laws of nature obtain - to the extent 
that they do obtain - on account of the capacities; or more explicitly, on 
account of the repeated operation of a system of components with stable 
capacities in particularly fortunate circumstances. Sometimes the arrangement 
of the components and the setting are appropriate for a law to occur naturally. 
as in the planetary system; more often they are engineered by us, as in a 
laboratory experiment. But in any case, it takes what I call a nonzological 
machine to get a law of nature. 

Here, by law of nature I mean what has been generally meant by ·taw' in 
the liberalised Humean empiricism of most post-logical-positivist philosophy 
of science: a law of nature is a necessary regular association between proper­
ties antecedently regarded as OK. The association maybe either I 00 per 
cent - in which case the law is deterministic. or, as in quantum mechanics, 
only probabilistic. Empiricists differ about what properties they take to be 
OK; the usual favourites are sensible properties, measurable properties and 
occurrent properties. My objections do not depend on which choice is made. 
The starting point for my view is the observation that no matter how we 
choose our OK properties, the kinds of associations required are hard to come 
by. and the cases where we feel most secure about them tend to be just the 
cases where we understand the arrangement of capacities that gives rise to 
them. The point is that our knowledge about those capacities and how they 
operate in given circumstances is not itself a catalogue of modalised regular­
ity claims. It follows as a corollary from my doctrine about where laws of 
nature come from that laws of nature (in this necessary regular association 

1 Cf. Harre 1993. 
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sense of 'law') hold only ceteris paribus - they hold only relative to the 
successful repeated operation of a nomological machine. 

What is a nomological machine? It is a fixed (enough) arrangement of 
components, or factors, with stable (enough) capacities that in the right sort 
of stable (enough) environment will, with repeated operation, give rise to the 
kind of regular behaviour that we represent in our scientific laws. The next 
four chapters will argue for the role of nomological machines in generating 
a variety of different kinds of laws: the laws we test in physics, causal laws, 
results in economics and probabilistic laws. This chapter aims to provide a 
sense of what a nomological machine is and of why the principles we use to 
construct nomological machines or to explain their operation can not 
adequately be rendered as laws in the necessary regular association sense of 
~law'. 

2 An illustration from physics of a nomological machine2 

Consider the naturally occurring regularity I mentioned above: planetary 
motion. Kepler noted that Mars follows an elliptical orbit with the sun at one 
focus. This is described in the first law that bears his name. Since the time 
of Robert Hooke and Isaac Newton, the so-called 'Kepler' s problem' has 
been just how to account for such an observed regularity in terms of mechan­
ical descriptions. that is, using descriptions referring to material bodies, their 
states of motion and the forces that could change them. Specifically the 
account calls for the mechanical description of the system in terms of an 
arrangement of two bodies and their connection. In my terminology the task 
is to figure out the nomological machine that is respansible for Kepler's 
laws - with the added assumption that the operation of the machine depends 
entirely on mechanical features and their capacities. This means that we have 
to establish the arrangement and capacities of mechanical elements and the 
right shielding conditions that keep the machine running properly so that it 
gives rise to the Kepler regularities. 

The basic insight for how to do so was shared not only by Hooke and 
Newton but also by their successors well into our century, for instance, Rich­
ard Feynman. 3 If a stone attached to a string is whirling around in a circle, it 
takes a force to modify its direction of motion away from the straight path 
so as to keep it in the circle. What is required is a pull on the string. In 
abstract physical tenns, it takes a radial attractive force - a force along the 

~ I want to thank Jordi Cat for discussions and for contributing significantly to this section of 
the chapter. 

' Fevnman 1992. 
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radius of the circular path and towards its centre. In the case of the orbiting 
planet, the constituents of the nomological machine are the sun, characterised 
as a point-mass of magnitude M, and the planet, a point-mass of magnitude 
m, orbiting at a distance rand connected to the former by a constant attractive 
force directed towards it. Newton's achievement was to establish the magni­
tude of the force required to keep a planet in an elliptical orbit: 

F=-GmM!r 

where G is the gravitational constant. The shielding condition is crucial here. 
As we well know, to ensure the elliptical orbit, the two bodies must interact 
in the absence of any additional massive body and of any other factors that 
can disturb the motion. 

Newton solved Kepler·s problem by showing that the elliptical geometry 
of the orbit determines the inverse-square kind of attraction involved in the 
gravitational pull.4 Conversely, he also showed that an attraction of that kind 
in the circumstances described could give rise to the observed regularity of 
the elliptical motion of Mars. 5 Although his proofs were essentially geomet­
rical in character, the well-known equivalent analytical proofs were soon 
introduced and adopted. 6 In both cases, built into the mechanical concept of 
force is the assumption that in the right circumstances a force has the capacity 
to change the state of motion of a massive body. To account for the regular 
motion of the different planets in the solar system, we must describe a differ­
ent machine, with a modified arrangement of parts and different shielding 
conditions. The pull of the additional planets on any planet whose observed 
regular orbit is being considered is then added to the pull exerted by the sun 

4 See I. Newton. Principia. Proposition 11. The proof solves the so-called •direct Kepler's 
problem·. See Newton 1729. 

~ Ibid .• Proposition 13. The proof provides a solution to the so-called 'inverse Kepler's prob­
lem·. 

6 A sketch of the analytical proof goes as follows. In the relation between a force. the mass of 
a body and the acceleration the body undergoes as a result of the force (alternatively. the 
acceleration by virtue of which it is able to exert the force - Ne"-1on · s second law of motion -
the force can be expressed as a function of the position of the body and of time: F(x.t) = m 

d!xfdr. A transformation into polar co-ordinates. the radius r and the angle ~. allows for an 
expression of the force in terms of the radial co-ordinates. F(r,t) and the angular ones. F(~.t>. 
By eliminating the time parameter. one can obtain an expression for the force in terms of r 
and cp only: F(r.q,) = -f/mr'(d:( 1/r)/d~: + 1/r). where I is the angular momentum of the system. 
This is the 'polar orbital equation'. Then by differentiating the orbital equation of the ellipse. 
1/r = c( I + ecos«P> (e is the eccentricity and c is a constant). one can arrive at the inverse­
square fonn of the required force. F = -k'( 1/r). in the direction of the sun. where k' is empiric­
ally determined by the arrangement of the system (k' = GmM). A discussion of Ne\\1on 's 
geometrical proofs and their correspondence with the modem analytical substitutes can he 
found in Brackenridge 1995. 
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in the expression of the gravitational force. The resulting orbits typically 
deviate from Kepler's perfect ellipses.7 

The example of the planetary motions is important for me since it has been 
used by philosophers and physicists alike in support of the view that holds 
more "basic' regularities as first and fundamental in accounting for observed 
regularities (i.e., in explanation. it is laws 'all the way down'). This view 
emphasises the unifying power of the appeal to Newton's laws with respect 
to Kepler's. I do not deny the unifying power of the principles of physics. 
But I do deny that these principles can generally be reconstructed as regular­
ity laws. If one wants to see their unifying power. they are far better rendered 
as claims about capacities, capacities that can be assembled and reassembled 
in different nomological machines, unending in their variety, to give rise to 
different laws. Newton's 'law of gravitation' is not a statement of a regular 
association between some occurrent properties - say masses, distances and 
motions. For it does not tell us about the motions of two masses separated 
by a distance r. but. instead, about the force between them. The term •force' 
in the equation of gravity does not refer to yet another occurrent property 
like mass or distance that could appear in a typical philosopher's list of 
occurrent properties. Rather, it is an abstract term (in the sense of chapter 2) 
that describes the capacity of one body to move another towards it, a capacity 
that can be used in different settings to produce a variety of different kinds 
of motions. 

Those who advocate laws as fundamental also point to the heuristic role 
they play in scientific discovery. Thus Feynman writes, '[W]hen a law is 
right it can be used to find another one. If we have confidence in a law 
[e.g .. Newton's law of gravitation], then if something appears to be wrong it 
can suggest to us another phenomenon. ' 8 Feynman is referring to the 
discovery of Neptune. The belief in Neptune's existence was suggested by 
the irregularity that the orbit of Uranus displayed with respect to the predic­
tions that can be made from Newtonian principles. In the law-first view, this 
discovery speaks to the importance of universal laws. I think this claim is 
mistaken. The observed irregularity points instead to a failure of description 
of the specific circumstances that characterise the Newtonian planetary 
machine. The discovery of Neptune results from a revision of the shielding 

7 It is worth mentioning that Newton's nomological machine derives its unifying power from 
its ability to account in addition for the regularities described in Kepler's second and third 
law. But in the case of the third law (that the square of the period of a planefs motion is 
proportional to the cube of the major axis of its orbit) Newton· s description of the setting 
includes the assumption that the planet's mass is negligible compared to the mass of the sun. 
Keplcr's law describes then only an approximation to the actual regularities displayed by the 
larger planets. such as Jupiter and Saturn. Cf Goldstein 1980. p. 101. 

11 Feynman 1992. p. 23. 
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conditions that are necessary to ensure the stability of the o1iginal Newtonian 
machine.9 

3 Models as blueprints for nomological machines 

My views about nomological machines come primarily from my work on 
models in the LSE Modelling and Measurement in Physics and Economics 
Project. When we attend to the workings of the mathematical sciences, like 
physics and economics. we find the important role models play in our 
accounts of what happens; and when we study these models carefully we 
find that they provide precisely the kind of information I identify in my 
characterisation of a nomological machine. Let us consider first models that 
lie entirely within a single exact science, such as physics or economics, where 
the role of the word 'exact" is to point to the demand made on models in 
these disciplines that the behaviour to be explained within the model should 
be rigorously derived from facts about the model plus the principles of the 
theory. I consider a number of different models in various chapters here. On 
the physics side these include Newton's planetary models for Kepler·s Jaws, 
which I just discussed; the detailed model provided by the Stanford Gravity­
Probe team for the predicted precession of the four gyroscopes they are send­
ing into space, from chapter 4: and the BCS model for the regular behaviour 
described in London's equations. from chapter 8. There are in addition two 
extended examples from economics: one in chapter 6 describes the regularit­
ies about efficiencies and inefficiencies that arise when debt contracts are 
written in certain ways and the other, an association between the length of 
time that individuals are unemployed and the persistence of unemployment 
in the economy, from chapter 7. All of these models provide us with a set of 
components and their arrangement. The theory tells us how the capacities are 
exercised together 

In order to do this job, the capacities deployed in the models we construct 
in the exact sciences will differ from the more ordinary capacities we refer 
to in everyday life. Consider. for example, Coulomb's law. Coulomb's law 
describes a capacity that a body has qua charged. It differs from many every­
day ascriptions of capacities in at least three ways that are important to the 
kind of understanding that exact science can provide of how a nomological 
machine operates. First. the capacity is associated with a specific feature -

" Of course. the alleged universality of the capacity of two masses to attract one another as 
described in Newton· s principles does matter for that is the usual justification for the assump­
tion that these particular masses will attract each other. Weaker assumptions about the extent 
of the capacity claim would clearly serve as well if the assumption of true universality should 
seem too grand. 
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charge - which can be ascribed to a body for a variety of reasons independent 
of its display of the capacity described in the related law - here Coulomb· s 
law. This is part of what constitutes having a scientific understanding of the 
capacity. Contrast two more everyday ascriptions. I am irritable and my hus­
band is inaccurate. These are undoubtedly capacities we have. Ask the chil­
dren or anyone we work with. Each has been established on a hundred differ­
ent occasions in a hundred different ways. Like the Coulomb capacity, these 
too are highly generic. They give rise to a great variety of different kinds of 
behaviour; the best description of what they share in common is that they are 
displays of my irritability or Stuart's inaccuracy. 

These everyday cases contrast with the scientific examples that I am con­
cerned with in the ways we have available to judge when the capacity obtains 
and when it does not. No one claims in cases like irritability to point to 
features which you could identify in some other way. independent of my 
displays of irritability, that would allow you to determine that I am indeed 
irritable. Philosophers debate about whether there must be any such features: 
first. whether there need be any at all in the individual who has the capacity, 
and second how systematic must be the association between the features and 
the capacity across individuals. Whatever the answer to these questions about 
everyday capacities, part of the job in science is to find what systematic 
connections there are and to devise a teachable method for representing them. 

The second way that Coulomb's capacity differs from everyday ones is 
that it has an exact functional form and a precise strength, which are recorded 
in its own special law. Third, we know some very explicit rules for how the 
Coulomb capacity will combine with others described by different force laws 
to affect the motions of charged particles. What happens when a number of 
different forces are exerted together on the same object? To find out. we are 
taught to calculate a 'total' force (F,) by vector addition of the strengths and 
directions recorded in each of the related force laws separately. Then we use 
the formula F1 = ma to compute the resulting acceleration. 

These two features are characteristic of the study of capacities in exact 
science, although the method of representation varies significantly across 
domains, both for the capacities themselves and for how to calculate what 
happens when they operate jointly. For an example of a different method of 
representation in physics we can move from the study of bodies in motion to 
that of electric circuits. The capacities of the components of a circuit - res­
istors, capacitors, inductances, and impedances - are represented in well­
known formulae. For instance, the capacitance of an isolated conductor is 
C = QIV. How do we calculate the current in a complex circuit from know­
ledge of the capacities of its components? We reduce the complex circuit to 
a simpler equivalent one that has elementary well-known behaviour, using 
some selection from a vast variety of circuit-reduction theorems, such as 
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Thevenin 's theorem or Mill man's theorem. Then we use what is essentially 
Ohm's law (I = VIR) to calculate the current. 

In game theory various concepts of equilibrium describe what is supposed 
to happen when the capacities of different agents are all deployed at once. 
Since we will look in some detail at an example from game theory in chapter 
6, here let us turn to the more descriptive side of economics, to econometrics. 
In econometrics strengths of capacities are generally represented by coeffi­
cients of elasticity, which can often be measured by partial conditional 
expectations. There are two different standard ways for calculating what hap­
pens under combination. One is similar to vector addition. We add together 
the canonical influences from each feature separately. So we end up with a 
linear equation: 10 effects are represented by the independent variable, differ­
ent causes by the dependent variables. where the respective coefficients rep­
resent the 'strength· of the capacity of each separate cause. 11 

In different situations we proceed differently: we use a set of simultaneous 
equations to fix what happens when different capacities are exercised 
together. Each separate capacity is represented by a different equation. When 
a number of capacities are exercised together, all the equations must be satis­
fied at once. Consider the simple case of supply and demand. The capacity 
of price to affect quantity supplied is represented in an upward sloping line: 
its capacity to affect quantity demanded by a line that slopes downward. 

q~ = a.p + J..l a > 0 

qd = ~p + \' ~ < 0 

If the system ts tn equilibrium. the quantity supplied equals the quantity 
demanded: 

q~ = qd 

What happens when both capacities of the price are exercised together? We 
require then that all the equations be satisfied at once. This means that the 
price is fixed; it lies at the intersection of the supply and demand curves. 
This is the source of the well-known identification problem in economics: 
how do we identify the equations we should use to represent the supply and 
demand equations separately when the supply mechanism and the demand 
mechanism never work on their own? What happens is always far more lim­
ited than what either equation allows. since the patterns of behaviour pennit­
ted by one are always further constrained by the second. The problem is 

10 lt is of course possible to introduce more complicated functional forms. as we generally do 
in physics. One cost is that most of the statistical techniques we usually employ for testing 
will no longer be available. 

" These kinds of cases were considered at length in Cartwright 1989. 
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especially pressing here because it does not even make sense to think of 
either of the two capacities being exercised on its own.'~ 

These examples bring out the wholistic nature of the project we undertake 
in theory formation in exact science. We must develop on the one hand 
concepts (like 4 the force due to gravity', 4 the force due to charge· u or "capa­
citance·, 'resistance·. ·impedance' ... ) and on the other, rules for combina­
tion: and what we assume about each constrains the other, for in the end the 
two must work together in a regular way. 14 When the concepts are instantiated 
in the arrangements covered by the rules, the rules must tell us what happens. 
where reRularity is built into the demand for a rule: whenever the arrange­
ment is thus-and-so. what happens is what the rule says should happen. 

Developing concepts for which we can also get rules that will work 
properly in tandem with them is extremely difficult, though we have suc­
ceeded in a number of subject areas. In both physics and economics we have 
a variety of formal theories with special concepts and explicit rules that allow 
us to predict what regular behaviours should occur whenever the concepts 
are instantiated in the prescribed kinds of arrangements. And in physics, 
where we have been able to build clear samples of these arrangements, a 
number of our formal theories are well confirmed. Economics generally must 
rely on a more indirect form of testing, and the verdicts there are far less 
clear. At any rate, the success in various branches of physics in devising 
special concepts and laws that work in cases where the concepts clearly apply 
shows that there are at least some domains where the requirements we have 
been discussing are not impossible to fulfil. 

A common metaphysical assumption about the completeness (or 
completability) of theory would go further and put an even more severe 
demand on our scientific concepts. The assumption was we)) expressed by 
John Stuart Mill: 

The universe. so far as known to us. is so constructed that whatever is true in any 
one case is true in all cases of a certain description: the only difficulty is to find what 
description. 1 ~ 

The sense of con1pleteness I have in mind is this: a theory is complete with 
respect to a set of cases when it supplies for those cases the descriptions that 
Mill expects plus the principles that connect the descriptions. 

1
.: This is in sharp contrast with the method of representation just discussed in which factors 

with different capacities are combined in a single equation. Generally in these cases the value 
of the other relevant causes can be set to ·zero· to represent situations in which they do not 
operate . 

11 
In my vocabulary these would be called •the Coulomb capacity'. 'the capacity for gravitational 
attraction· and so on. 

14 
This point. J take it. i~ similar to that of IXmald Davidson in Davidson 1995. 

1 ~ Mill I R43. vol. J. o. 337. 
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What about this additional demand? Should we accept it? I urge 'no'. The 
constraints imposed on concept formation in exact science by the demands 
to build at the same time a system of matching rules that will work together 
with the concepts in the right way are so severely confining that we have 
only satisfied them in a few formal theories in physics. and with great effort. 
And even in physics, we never have had a success, nor a near success. at 
completeness. It is only subject to the big ceteris paribus condition of the 
operation of an appropriate nomological machine that we can ever expect, 
•that whatever is true in any one case is true in all cases'. We might well 
of course aim for completeness in any case where we have an empirically 
well-grounded research programme that offers promising ideas for how to 
achieve it. But in general we have no good empirical reason to think the 
world at large lends itself to description by complete theories. 

This is why the idea of a nomological machine is so important. It is. after 
all. only a philosophical concept, like 'unconditional law' or 'complete 
theory' or ·universal determinism·, a way of categorising and understanding 
what happens in the world. But it has the advantage over these that it adds 
less than they do to what we are given in our observations of how successful 
formal theories work; and it shows that we do not need to use these more 
metaphysically extensive concepts in order to make sense of either the suc­
cesses of our exact sciences nor of the pockets of precise order that these 
sciences can describe. Where there is a nomological machine, there is law­
like behaviour. But we need parts described by special concepts before we 
can build a nomological machine. The everyday concepts of irritability and 
inaccuracy will not do. it seems. nor the concept of acceleration in terms of 
rate of change of velocity with distance (dv/dr) rather than with time (dv/dn. 
which the Medievals struggled to make a science of. We also need a special 
arrangement: a bunch of resistors and capacitors collected together in a paper 
bag will not conduct an electric current. When we understand it like this, we 
are not inclined to think that exact science must be completable. at least in 
principle, in order to be possible at all. 

There is one further central aspect of nomological machines that I have so 
far not discussed: shielding. Recall the irregularity in the orbit of Uranus 
from the point of view of the original model of the planetary machine. This 
reminds us that is not enough to insist that the machine have the right parts 
in the right arrangement: in addition there had better be nothing else happen­
ing that inhibits the machine from operating as prescribed. As we saw in 
chapter I, even a very basic principle like F = ma needs a shield before it 
can describe a regularity. We can have all the forces in all the right arrange­
ments that license assignment of a particular 'total' force F. But we cannot 
expect an acceleration a= F/m to appear if the wind is blowing too hard. The 
need for shielding is characteristic of the ordinary machines we build in 
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everyday life. The importance of the concept of shielding in understanding 
when regularities arise is a large part of the reason why it is so useful to 
think of the special arrangements that generate regularities as n1achines. 

Models of certain kinds, I claim, function as blueprints for nomological 
machines. But we must not mistake this for the claim that the models we 
usually see in theories show us to build a nomological machine. The models 
are generally given at far too high a level of abstraction for that. Just think 
about the arrangen1ents that must obtain in the model when we expect to do 
a vector addition of a number of forces represented there: the forces must all 
be ·exercised together·. And what does that mean? At least in the case of 
certain descriptive concepts, we get help from the bridge principles of the 
theory. But we generally get no advice at all in the case of arrangements. 
Even the bridge principles of course are little help in the actual building of 
a machine. Bridge principles tell us what the abstract concepts consist in 
more concretely. (For examples see chapter 8.) But what we are told is still 
too formal. We need to know about real materials and their properties, what 
the abstract concepts amount to there, before we can build anything. But 
telling us this is no part of theory. This is one of the reasons that I find the 
·vending machine· view of scientific prediction. testing, or application that I 
discuss in chapter 8 so grotesque. 

I began with models that lie entirely within a single exact science. These 
are the models that allow us to predict in a systematic and warranted way 
the kind of precise and regular behaviour that we see in the laboratory and 
in many of our carefuiJy manufactured technological devices or even occa­
sionally in nature as it comes. But not all regular behaviour is precise. 
Coarsely-tuned machines, like my old bicycle. can give us regular behaviour 
even though the descriptions under which the behaviour falls are in no way 
quantitatively precise. Nor are the predictions of models always warranted in 
this top-down way. In general we construct models with concepts from a 
variety of different disciplines. the arrangements in them do not fit any rules 
for composition we have anywhere and the regular behaviour depicted in the 
model does not foiJow rigorously from any theory we know. Yet these models 
too, whenever I look at one of them, seem well described as blueprints for 
nomological machines. 

So here is my strong claim: look at any case where there is a regularity in 
the world (whether natural or constructed) that we judge to be highly reliable 
and which we feel that we understand - we can either explain the regularity 
or we believe it does not need explanation. What you will find. I predict, is 
that the explanation provides what is clearly reasonable to label as a nomolo~­
ical machine. And where there is no explanation needed you will still find a 
machine. Sometimes for instance the whole situation is treated as one simple 
machine (like the lever), where the shielding conditions and the idea of 
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repeated operation are so transparent that they go unnoted. To the extent that 
this claim is borne out. to that extent we have powerful empirical evidence 
that you cannot get a regularity without a nomological machine. And if nomo­
logical machines are as rare as they seem to be, not much of what happens 
in nature is regular and orderly. as Mill supposed it to be. The world is after 
all deeply dappled. 

4 Capacities: openness and invention 

I argue against laws that are unconditional and unrestricted in scope. Laws 
need nomological machines to generate them, and hold only on condition 
that the machines run properly. But there are. as we saw in the last section. 
some very well understood machines, modelled within the various disciplin­
ary boundaries of our exact sciences. I say our understanding of these 
depends on knowledge of capacities. not knowledge of laws. Is there much, 
after alL in the difference? I think so, because when we refuse to reconstruct 
our knowledge as knowledge of capacities. we deny much of what we know 
and we turn many of our best inventions into pure guesses. What is important 
about capacities is their open-endedness: what we know about them suggests 
strategies rather than underwriting conclusions. as a vending-machine view 
of science would require. To see the open-endedness it is useful to understand 
how capacities differ from dispositions. 

Disposition terms. as they are usually understood. are tied one-to-one to 
law-like regularities. But capacities, as I use the term. are not restricted to 
any single kind of manifestation. Objects with a given capacity can behave 
very differently in different circumstances. Consider Coulomb· s law. F = 
- q,q~/4~~.2, for two particles of charge q1 and q2 separated by a distance 
r. I will discuss this case in more detail in chapter 4. For here let us just 
consider what Coulomb ·s law tells us about the motions of the particle pair. 
It tells us absolutely nothing. Before any motion at all is fixed. the particles 
must be placed in a special kind of environment: just the kind of environment 
that I have described as a nomological machine. Without a specific environ­
ment, no motion at all is determined. 

We may think that the natural behaviour for opposite charges is to move 
towards each other and for similar charges. to separate from each other. But 
it is important to keep in mind that this is not an effect in ahstracto. That 
motion. like any other, depends on how the environment is structured. There 
is no one fact of the matter about what occurs when charges interact. With 
the right kind of structure we can get virtually any motion at all. We can even 
create environments in which the Coulomb repulsion between two negatively 
charged particles causes then1 to n1ove closer together. Figure 3.1 gives an 
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Two electrons c 1 and e2 are released from rest into a cylinder as in Figure 
.l J b. The cylinder is open from one side only. and it is open to a unified 
magnetic field directed towards the negative z-axis. The initial distance 
between the two electrons is r 1 • According to the laws of electromagnetism. 
the force between the two electrons is a repulsive force equal to 

I e 1 e~ F = ----, = 11lcaa. 
47i.:o 'I 

Whereas e~ will be locked inside the cylinder. e 1 will enter the magnetic field 
8 with a certain velocity P 1. The magnetic field on e1 will move it in a circular 
motion (as in the figure) with a force equal to 

F = el·1 : -~ B. 

This will take the electron e 1 into an insulated chamber attached to the 
cylinder . The dimensions of the cylinder and the chamber can be set so 
that the distance between the final position of e 1 and e~ is less than r 1 • 

Figure 3.1 a Source: example constructed by Towfic Shomar. 

example. due to Towfic Shomar, from the LSE Modelling and Measurement 
in Physics and Economics Project. 

For a different kind of example, let us turn to economics. to a study by 
Harold HotelJing Jt~ of Edgeworth 's taxation paradox. 17 This is a case that I 
have worked on with Julian Reiss, also from the LSE Modelling and Meas­
urement in Physics and Economics Project. 1x Taxes have the capacity to 
affect prices. How do we characterise the effects of this capacity? Think 
again about the capacity represented in Coulomb ·s law with respect to the 
motion of oppositely charged particles. We tend to characterise this capacity 
in the canonical tenns I used above: opposite charges move towards each 
other: similar charges. away from each other. Similarly, taxes increase prices. 
The 'paradox· pointed out by Edgeworth is that this is not the only possibility. 
In the right situations taxes can decrease prices. and they can do so by follow­
ing ju~a the same principles of operation that ~normally' lead to price increase. 

Hotelling produced a toy model of a simple economy that illustrates Edge­
worth's paradox. The economy consists of many firms which compete in the 
production of the different commodities and many buyers whose sole source 
of utility derives from these goods. A version of the Hotelling economy with 

11
' Hotelling I Y.3:!. 

'' Cf Edgcworth 19:!5. section 11. 
,,. Sec also Hand~ and Mirowski I YY7 and my comments in Canwright 1997c. 
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only two goods is described in Figure 3.2. If we consider a tax r levied on 
the first good only, what matters are two equations of the following forms: 

dp 1 =rAID 

dp~ = tBID 

A and B are functions. through the demand and supply equations. of partial 
derivatives with respect to each of the two quantities of functions of both 
quantities <Oj(q 1q-:JI'&t 1 •• •• ). In the terminology I used in Nature's Capacities 
and their Measuren1ent. 1

(j AID represents the strength of r' s capacity to affect 
dp1• and BID. the strength l~{ t's capacity to affi'ct dp~. For Hotelling's two 
commodity economy. it can be shown that D is always positive. But it is 
possible to construct supply and demand functions whose pararneters make 

1
'
1 Cartwright 1 QXI..). 
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The economy 1 consists of many firms who compete in the production of two 
different commodities and many buyers whose sole source of utility is from 
these two goods. The prices of the goods are p 1 and p:_. respectively. and the 
demand functions are given by the expressions: 

( 1 ) 

It is assumed that these equations are solvable. such that we have the inverse 
demand functions: 

(2) 

For the producers the respective supply functions are given with the fo1low-
. . 
tng expressions: 

q, = Gi (PI· P2) (i = 1. 2) 

p, = g,((/l· q:.) (i = 1. 2). 

(3) 

( 4) 

Now. let lz,(q 1 • q:_) be the excess of demand price over supply price . Thus we 
obtain. 

(5) 

A differentiation with respect to a qi will be denoted with a subscript j. so 
that. 

. _ i)f. Dg1 iJh, 
./IJ = -;---) . g,J = D· qi . lzn = -{ - . . c qJ . r}q 

.I 

The last definition will be the determinant of the marginal excess pnce 
matrix: 

h,;_ i 
:= h,,h ...... - h ... ,h, .... 

I I -- - -
1:_:. 

Let an asterisk *denote the equilibrium values for which supply and demand 
are equal. Then 

(6) 

Now. a tax t, per unit sold is imposed on the ith commodity. payable by the 
producers. Let p, + dp, and q, + dq, be the new prices and quantities. In 
equilibrium. the demand price must exceed the supply price by exactly t,. 
Hence. 

hi(qj + dq 1 , q; + dq2 ) = ti .no(7) 

A Taylor expansion of the first order and the subtraction of equation (6) 
yield the following approximations for small /1: 

Figure 3.2 Taxation under free competition in a Hotelling economy. Source: 
construction of this two-commodity economy is by Julian Reiss. 

(8) 
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The solutions to these equations are: 

h1~ 1 '1 h-n - r2h12 

11 2 ~ 1= h11h22- h:1h,2 · 
(9) 

~~I= ':hi, -t,h21 . 

/-.: hllh22- h21hl2 

The interesting effect the tax has is on the prices. The price changes to buyers 
resulting from the taxes are: 

0 .f; I l I 

1 ;,il221 dp. =- iJ /I hit (] 0) 
I 

f, h:t "22! 

Or. more specifically. the h11 s replaced hy the corresponding ./i1 - gi
1 

and. 
following Hotelling's ( 1932). example. the tax levied upon good one only 
(11 = I. t-2 = 0): 

I( fj I f":2 - .fi lg2~ - f12f~l + .fj2g21) 

D 

d 
t( .f2~X~t - .f21K22) 

P~ = D 

( I 1 ) 

Edgeworth's taxation paradox arises when a tax levied upon a good 
decreases its price rather than increases it. as is normally expected. It can 
be shown that for two commodities D > 0.~ With that result and the fact 
that t > 0 the conditions for Edgeworth taxation paradox to arise are:·~ 

dpl < 0 <=> .fj Lf2.: - f1-:.f21 < ft lg22 - .fj2g21 · 

dp2 < 0 <=;> f~tg:::. - f:2g21 < 0. 
( 12) 

One can easily see the dual (or triple) capacity of the tax to increase or 
decrease (or leave unchanged) the prices. depending on the values of the 
other parameters. This dual capacity sten1s from the fact that the two 
goods interact both in consun1ption and production. For a singk commod­
ity equation ( 1 0) yields: 

dp = - _!_I 0 fl I I = ~/I I > 0. ( I 3 ) 
D. ( hll I hll 

since t is always positive and both ./i 1 and h1 1 ( = .fi 1 - g 1 1) are negative. 

1 This example is a simplified version of the model of Hotclling ( l '132 ). Section 5. 
Cf Hotelling ( 1932). p. 601. 
The slight differences between these conditions and Hotelling·s original conditions 
(25) and (26) arise from the fact that Hotel1ing makes use of his integrability condi­
tions that imply h,, = h1,. 

Figure 3.2 cont. 
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A or B or both negative. So. depending on the specific structure of supply 
and demand in the Hotelling economy. taxes can increase prices. or decrease 
them. or the prices may even stay the same. Yet in al1 instances it is the same 
capacity at work. with the same functional form. derived from the same basic 
principles. 

These two examples - of Coulomb ·s law and of the capacity of taxes to 
affect prices - illustrate why I talk of capacities. which give rise to highly 
varied behaviours. rather than of dispositions. which are usua11y tied to single 
manifestations. If we do wish to stick to the n1ore traditional vocabulary of 
dispositions. then a capacity is what in The Concept of Mind Gilbert Ryle 
called a "highly generic· or "determinable· disposition as opposed to those 
that are "highly specific· or "determinate·. According to Ryle. verbs for 
reporting highly generic dispositions ·are apt to differ from the verbs with 
which we name the dispositions. while the episodic verbs corresponding to 
the highly specific dispositional verbs are apt to be the same. A baker can be 
described as baking now. but a grocer is not described as .. grocing" now. 
but only as sel1ing sugar now. or weighing tea now. or wrapping up butter 
now.·:!o 

The point I want to stress is that capacities arc not to be identified with 
any particular rnanifestations. They are rather like ·know·. ·believe·. ·aspire·. 
"clever· or "humorous· in Ryle's account: "They signify abilities. tendencies. 
propensities to do. not things of one unique kind. but things of lots of differ­
ent kinds. ' 21 This is why the idea of the nomological machine is so important 
when we think of using the knowledge we gather in our exact sciences to 
intervene in the world. Much of modem scientific theory is about capacities, 
capacities which can have endless manifestations of endless different variet­
ies. That is the key to how scientific invention is possible. Similarly charged 
particles repel each other. opposite charges attract~ what that can amount to 
in terms of the motions and locations of the particles is limited only by our 
imagination. Taxes affect prices. but what happens to the prices depends on 
the economics we build and how well we build them. 

5 Do we really need capacities? 

It is now time to defend explicitly my claim that we need claims about capa­
cities to understand nomological machines and cannot make do with laws. in 
the necessary regular association sense of "law·. I shall look at two prominent 
places where we can see why we need capacities instead of laws. The first is 
in the principles for building nomological machines, the second for describing 

~n Ryle 1949, p. 11 X. 
~I /hid .. 0. 119. 
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their running. It is important to the discussion to keep firmly in mind that 
there is more to the conventional sense of ·taw' than regularity: the regularit­
ies are supposed to be ones between some especially favoured set of OK 
properties. say occurrent properties or ones we can measure. But these wiiJ 
never give us what we need. 

Look first to the building of a nomological machine. In building the 
machine we compose causes to produce the targeted effect. Consider again 
Newton· s principle of gravity and Coulomb· s law. These two may work 
together. in tandem with Newton's second law of motion (F = ma), to explain 
the trajectory of a charged body. I say that Newton· s and Coulomb· s prin­
ciples describe the capacities to be moved and to produce motion that a 
charged body has, in the first case the capacity it has on account of its gravita­
tional mass and in the second, on account of its charge. How should we 
render Newton· s principle. instead, as a claim about regular associations 
among purely occurrent or directly measurable properties? 

The relevant vocabulary of occurrent or measurable properties in this case 
is the vocabulary of motions - positions. speeds. accelerations. directions and 
the like. But there is nothing in this vocabulary that we can say about what 
masses do to one another. 22 As we saw in section 4. when one mass attracts 
another, it is completely open what motion occurs. Depending on the circum­
stances in which they are situated. the second mass may sit still, it may move 
towards the first. it may even in the right circumstances move away. There 
is no one fact of the matter about what occurrent properties obtain when 
masses interact. But that does not mean that there is no one thing we can 
say. ·Masses attract each other.· That is what we say. that is what we test, in 
thousands of different ways~ and that is what we use to understand the 
motions of objects in an endless variety of circumstances. 

·Masses attract each other.· Perhaps this is what regularity theorists had in 
mind all along. But if so. they have given up the resistance to capacity talk 
altogether. What occurrent or directly measurable properties do two bodies 
have in common when they are both attracted to another body? None. Sim­
ilarly two masses that are both busy attracting other bodies are crucially alike. 
but not in any way that can be described within the vocabulary of measurable 
or occurrent properties. Think about Gilbert Ryle 's arguments in The Concept 
of Mind. When we use the term 'attract' in the consequent of a regularity 
claim. we do just what Ryle warns us against in the case of mental disposi­
tions: we cate.gorise together as one kind of episode all the results that happen 

~~ The one case we have looked at where the basic principleo,; could legitimately be thought of 
as describing what systems do using only occurrent-property language is in the simultaneous 
equations models of econometrics. The equations are supposed to involve only measurahle 
quantities. and since each equation must he separately satisfied. the relations between measur­
able quantities that really occur are literally in accord with each of the principles. 
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when two masses interact. whatsoever these episodes look like. The Concise 
o.,ford En~lish Dictionary. 2 ·~ for instance. defines ·attract' when used "of 
a magnet. gravity. etc.' as ·exert a pull on'. ·Attract' and ·pull' are like 
· groce · for the activities of a grocer and ·solicit' for the activities of a soli­
citor. They are not in the usual philosopher's list of occurrent property tenns. 
Rather. they mark the fact that the relevant capacity has been exercised. That 
is what is in common among all the cases when masses interact as Newton 
described. 

Sometimes we conceal the widespread use in physics of tenns like ·attract·. 
tenns that mark the exercise of a capacity. by a kind of equivocation. We 
switch back and forth between an occurrent sense of the tenn - a body has 
attracted a second when the second moves towards it - in which Newton's 
principle or Coulomb's is generally not borne out - and the sense marking 
the exercise of a capacity in which the principles do seem to be true (if not 
universally at least as widely as we have looked so far). ·Attract'. like many 
verbs in both ordinary and technical language. comes with a natural effect 
attached. and with two senses. In the first sense the natural effect must occur 
if the verb is to be satisfied: in the second sense. it is enough for the system 
to exercise its capacity regardless of what results. i.e .. for it to try to produce 
the associated effect. 

The trying is essential. and sometimes verbs like these have it built right 
into their definition. To ·court'. according to the Concise Q_\ford Dictionary,24 

is to "try to win the affection or favour of (a person)'. These kinds of words 
are common in describing the facts of everyday life: to brake - to apply the 
brakes. or to succeed in slowing the vehicle: to anchor- to lower the anchor. 
or to succeed in securing the boat: to push. to pull, to resist. to retard, to 
damn. to lure, to beckon. to shove. to harden (as in steel), to light (as the 
fire) .... : and especially for philosophers: to ·explain' is not only, in its first 
sense in the Concise o.,ford Dictionary, to ·make ... intelligible .. but also. 
in its second. to ·say hy way of explanation' . 2 ~ 

The technical language of physics shares this feature with our more ordin­
ary language: indeed it shares much of the same vocabulary. Attraction. 
repulsion. resistance. pressure. stress. and so on: these are concepts that are 
essential to physics in explaining and predicting the quantities and qualities 
we can directly measure. Physics does not differ from ordinary language by 
needing only some special set of occurrent property tenns or directly measur­
able quantities stripped of all connections with powers and dispositions. 
Rather. as I described in section 3. what is distinct about the exact sciences 

~' Xth edn. 1990. 
~-~ /hid. 
~~ /hid .. italics added. 
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is that they deal with capacities that can be exercised not only more or less -
push harder, or resist less - but with ones for which the strength of effort is 
quantifiable. and for which, in certain very special circumstances. the exact 
results of the effort may be predictable. 

The second place where it is easy to see the need for capacity concepts is 
when we set the nomological machine running. This is a point I make much 
of at other places, so I will only summarise here. Consider the very simple 
case of two charged bodies separated by a distance r. To calculate their 
motions. we add vectorially the force written down in Coulomb's principle 
and the force written down in Newton ·s law of gravity; then we substitute 
the result into Newton's second law. F = ma. What then are we supposing? 
First, that there is nothing that inhibits either object from exerting both its 
Coulomb and its gravitational force on the other; second. no other forces are 
exerted on either body: and third. everything that happens to the two bodies 
that can affect their motions can be represented as a force. Notice that these 
caveats all have to do with capacities and their exercise. Nothing must inhibit 
either the charges or the gravitational masses from exercising their capacities. 
No further capacities studied in classical dynamics should be successfully 
exercised: and finally, the capacity of a force to move a body as recorded in 
Newton· s second law must be exercised successfully. unimpeded and without 
interference. 

Can we render these caveats without using the family of concepts involving 
capacities? Throughout these chapters I argue that we cannot. (In particular. 
I treat the first and second conditions in chapters 4 and 8; the third was 
discussed at length in chapter 1.) The idea that we can do so is part of the 
fundamentalist pretensions of physics: there is some vocabulary special to 
physics within which we can describe everything that matters to the motions 
of bodies. This view gains support, I take it. from a mistaken understanding 
about how deductivity works in physics. In theories like mechanics. electro­
magnetism and special relativity we have had considerable success in finding 
sets of occurrent property descriptions that have a kind of deductive closure: 
certain kinds of effects describable in that vocabulary occur reliably in cir­
cumstances where all the causes of these kinds of effects (and their 
arrangement) can be appropriately described within the designated vocabu­
lary. But that does not cash out into regularity laws with the descriptions of 
the causes and their arrangements in the antecedents and the descriptions of 
the effects in the consequent. For we still need the shielding: nothing else 
must occur that interferes with the capacities of those causes in that arrange­
ment to produce those effects. 

The need for this kind of addition is often obscured by the plasticity of the 
language of physics. Sometimes terms in physics refer to genuinely measur­
able quantities that objects or systems might possess and sometimes the use 
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of the very same tenns requires truths about the operation of capacities for 
its satisfaction. This plasticity gives physics two different ways to t1nesse the 
problen1s I have been discussing - either narrow the range of the antecedent 
to include the ( ·ercris parihus conditions right in it. or expand the range of 
the consequent to cover whatever occurs when the capacities in question 

operate. 
We have seen lots of illustrations of the second device already. for instance 

·with the introduction of words like ·attract' and ·repel' into Coulomb's la\\,. 
and the law of gravity. The t1rst can be seen in the simple case of the law of 
the lever. ·Lever· can be defined in tenns of occurrent properties. making no 
allusion to capacities and their exercise. So. we sometimes use 'lever' to 
mean rigid rod. where a rod is rigid just in case the distances between all 

the mass points that make it up remain constant through the motions of these 
mass points. But sometimes we use 'lever' only for rigid rods so placed that 
their capacity to exhibit the behaviour required in the law of the lever wil1 
operate unimpeded. In this sense (if physics is right about the capacities of 
rigid rods). then a lever is bound to satisfy the law of the lever. 

So far I have argued that there are jobs we do - and indeed should do -
with our scientific principles that cannot be done if we render them as laws 
instead of as descriptions of capacities. There is one answer to my plea for 
capacities that sidesteps these defences of capacities. The answer employs a 
kind of transcendental argument. It does not attempt to show how it is pos­

sible to do these jobs without capacities but rather tries to establish that it 
must be possible to do so. I borrow the fonn from arguments made by Bas 

van Fraassen and by Arthur Fine in debating more general questions of scien­
tific realism.:~n The argument presupposes that we have available a pure data 
base. cleansed of capacities and their non-Humean relativities. The objection 

goes like this: ·You. Cartwright. wil1 defend the design of given machine by 

talking about what impedes and what facilitates the expression of the capacit­
ies in question. I take it this is not idle faith but that in each case you will 
have reason for that judgement. These reasons must ultimately be based not 
in facts about capacities. which you cannot observe. but in facts about actual 

behaviour. which you can. Once you have told me these reasons. I should be 
able to avoid the digression through capacities and move directly to the same 

conclusions you draw with capacities. Talk of capacities may provide a con­
venient way to encode information about behaviours. but so long as we insist 
that scientific claims be grounded in what can be observed, this talk cannot 
contribute any new information.' 

But what about this decontaminated data base? Where is it in our experi­

ence? It is a philosophical construction. a piece of metaphysics. a way to 

2
" Van Fraasscn 19XO. Fine 19X6. 
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interpret the world. Of course we cannot do without interpretation. But this 
construction is far more removed from our everyday experience of the world 
as we interact with it and describe it to others than are homely truths about 
triggering mechanisms. precipitating factors. impediments, and the like, 
which mark out the domain of capacities. Consider an adaptation of van 
Fraassen · s objection to causes. ~ 7 which is a version of essentially the same 
argument. The objection proceeds from the assumption that there is some 
defensible notion of a sensible property which is conceptually and logically 
distinct from any ideas connected with capacities. We are then confronted 
with a challenge to explain what difference capacities make. ·Imagine a world 
identical with our own in all occurrences of its sensible qualities throughout 
its history but lacking in facts about capacities. How would that world differ 
from our world?· 

On one reading, this argument may be about sequences not of properties 
in the world but of our experiences about the world. These sequences are to 
remain the same. but we are to imagine that they are not caused in the usual 
way by what is going on in the world around us. This reading cannot be 
the one intended. though. since it does not cut in the right way, revealing 
special virtues for descriptions like ·is red· or •is a jet-stream trail' in contrast 
with ones like "has the power to relieve headaches' or ·attracts other charges. 
qua charged'. 

I might further be invited to inspect my experiences and to notice that they 
are ·really' experiences of succession of colour patches. say. with capacities 
nowhere to be found. The philosophical dialogue along this line is well 
rehearsed; I merely point in the familiar directions. My experiences are of 
people and houses and pinchings and aspirins. all things which I understand. 
in large part. in terms of their capacities. I do not have any raw experience 
of a house as a patchwork of colours. Even with respect to colours. my 
experience is of properties like red, which brings to objects the capacity to 
look specific ways in specific circumstances. Sense data. or the gil'en. are 
metaphysical constructs which. unlike capacities, play no role in testable sci­
entific claims. Once there was a hope to mark out among experiences some 
raw pieces by using an epistemological yardstick: the ·real' experiences were 
the infallible ones. After a great deal of debate it is not clear whether this 
criterion even lets in claims about felt pains; but it surely does not distinguish 
claims like "The stripes are red· from ·Your pinching makes my ann hurt· 
and ·Mama is irritable·. 

The contemporary version of this argument tends. for these reasons. not to 
be in terms of sense experiences but in terms of sensible properties. But here 
there is a very simple reply. A world with all the same sensible properties as 

27 Van Fraassen 19RO. eh. 5. 
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ours would already be a world with capacities. As I remarked above. redness 
is the property that. among other things. brings with it capacity to look just 
this way in normal circumstances. and to look systematically different when 
the circumstances are systematically varied. 

Perhaps we are misled here by carrying over the conclusions of an earlier 
metaphysics. conclusions for which the premises have been discarded. These 
premisses involve the doctrine of impressions and ideas. In the immediately 
post-Cartesian philosophy of the British empiricists. sensible properties could 
be picked out because they looked like their impressions. Gaze at the first 
stripe on the American flag: redness is the property that looks like that. We 
do not have this copy theory: so we do not have properties that are identified 
like that. Correlatively. we can no longer make the same distinction separat­
ing powers and their properties as did these seventeenth-century empiricists. 
On their doctrine. the way things looked could get copied in the perceiver's 
impressions of them: but the various powers of the property could not. Since 
their ideas were copies of their impressions. necessarily their world. as 
imaged, had only inert properties. 

But we do not have the copy theory of impressions. nor do we adopt 
this simple theory of concept formation. For us, there are properties, and all 
properties bring capacities with them. (Perhaps. following Sydney Shoe­
maker. 2x they are all just conglomerates of powers.) What they are is given 
not by how they look but by what they do. So, ·How does the Hume world 
differ from ours?· It would not differ. Any world with the same properties 
as ours would ipso facto have capacities in it, since what a property empowers 
an object to do is part of what it is to be that property. The answer is the 
same for a world with the same sensible properties. And what about a world 
the same with respect to all the look-of-things? That question may have made 
sense for Lock e. Berkeley. and Hume: but without the copy theory of impres­
sions and the related associationist theory of concept formation, nowadays it 
makes no sense. 

6 Metaphysical aside: what makes capacity claims true? 

The world is made up of facts. Wittgenstein taught us. As empiricists we 
should insist that it is these facts that make our scientific claims true. What 

2 ~ Shoemaker 19H4. eh. 10. 
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facts then are they that make our capacity claims true? Let n1e turn the ques­
tion around and see what the traditional view has to say. What facts make 
law claims true in the necessary regular association sense of law? There are. 
I think. only two honest kinds of answer for an empiricist. 

The first is that regularities n1ake law clainzs true. real regularities. ones 
that actually occur. These are undeniably facts in the world. not for instance 
putative facts in some merely possible world. They are thus proper empiricist 
candidates for truth makers. But we know that this lets in both too little and 
too much. Start with too much. What about all the accidental regularities'! 
There is an honest empiricist answer: 29 laws are those regularities that cover 
the widest range of occurrences in the n1ost efficient way .. ~o The objection 
that there are too few regularities was taken up by Bertrand Russell:-~ 1 a 
good many of the claims we are most interested in. especially in contexts of 
forecasting and planning. are about situations that may never occur or only 
rarely get repeated. Russell claimed that physics solves this problem by using 
very abstract descriptions: at that level 'the same thing· does generally occur 
repeatedly. (So. for example. the trajectories of the planets and of cannon 
balls and of electrons in a cloud chamber are all supposed to instantiate F = 
ma.) 

My objection is the same in both cases. I summarise the lessons argued 
for in various places throughout this book: there are no such regularities to 
begin with. Unless we take capacities robustly. Coulomb's and Newton ·s 
principle are ruled out immediately. Perhaps they are to get relegated to the 
status of calculational tools for getting ·rear regularities. like F =nul. But 
even this is not a true regularity without adding to the antecedent the caveat 
that the force operates uninzpeded. Russell's proposal fares better: but. as I 
argued in section 5. only if we allow our abstract vocabulary to include terms 
like ·attract· and ·repel'. terms that have implications about capacities and 
their operations built in. So regularity theorists cannot even get started unless 
they too take facts involving how capacities operate to be part of the constitu­
tion of the world. 32 

Alternatively. there are proposals'·' to take necessitation as one of the kinds 
of facts that make up the world. Then we can still be £7nlpiricist in the sense 
that we can stick to the demand that scientific claims be judged against facts 

~" Cf. Friedman. Earrnan. Kit<.:her. 
10 That is. what makes a law daim true arc first. a regular association and sc<.:ond. fa<.:ts about 

how much a given collection of regular associations covers versus how mu<.:h another does. 
11 Russell 1912- I 3. 
1
: Facts. for instance. of the form X intl't:fered with y· s cupucity to do Z. 

11 Cf Maudlin 1997. 
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about the real world around us. _'4 The drawback to this proposal from my 
point of view is not that it lets modal facts into the world but rather that it 
lets in the wrong kind of modal fact. The inversion of a population of atoms 
does not necessitate the emission of coherent radiation: it allows it. But it 
allows it in some very special way. After all. anything can cause anything 
else. In fact. it seems to me not implausible to think that. with the right kind 
of nomological machine. almost anything can necessitate anything else. That 
is. you give me a component with a special feature and a desired outcome. 
and I will design you a machine where the first is followed by the second 
with total reliability. Just consider. for example. Rube Goldberg machines or 
Paolozzi sculptures. 

So. if anything can cause practically anything else. what is special about 
the clain1 that an inversion in a population of atoms allows (or can cause) 
coherent radiation? We can use the expression we often introduce in 
explaining our intuitions about laws of nature here: the inversion allows the 
coherent radiation hy virtue l~{ the structure qf the world. or hy l'irtue l~{ the 
wa\· the world is nzade. But what does that mean? To mark the distinction 
between the kind of accidental possibility. where anything can result in any­
thing else. and this other more nomological sense of possibility. Max Weber 
labelled the latter ·ohjective possibility·.~) Weber"s ideas seem to me very 
much worth pursuing in our contemporary attempts to understand scientific 
knowledge. But so far I still think that the best worked out account that suits 
our needs most closely is Aristotle ·s doctrines on natures. which I shall 
defend in the next chapter. Capacity claims. about charge. say, are made true 
by facts about what it is in the nature of an object to do by virtue of being 
charged. To take this stance of course is to make a radical departure from 
the usual empiricist view about what kinds of facts there are. 

That returns me to the plea for the scientific attitude. Philosophical argu­
ments for the usual empiricist view about what there is and what there is not 
are not very compelling to begin with. They surely will need to be given up 
if they land us with a world that makes meaningless much of what we do 
and say when we use our sciences most successfully. What makes capacity 
claims true are facts about capacities. where probably nature's grammar for 
capacities is much like our own - or at least as much like our own as any 

w Perhaps I should say that this allows us to ~atisfy the ontolo~ical demands of empiricism. 
There are of course in addition in the empiricist canon also epistemological demands and 
demands about how meanings l'an be fixed. In my view. as I argue in different places here 
and in Cartwright 19X9. all these kinds of demands are just as well met hy claims about 
capacities as by claims ahout occurrent properties. 

" Cf. Weber's Tlu' Loxic of llistorica/ Explanation in Runciman 197H, which is translated from 
Weher's 1951. In that essay. Weber attributes the concept of ohjecti\'t' pos!iihility to the 
Gem1an physiologist Johannes von Kries. 
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other claims about the structure of the world that we back-read from success­
ful scientific formulations. What makes true. then, the claim, "Inversion in a 
population of atoms has the capacity to produce coherent radiation·? In 
simple Tarski style. just that: the fact that inversion has the capacity to pro­
duce coherent radiation. And this fact. so far as our evidence warrants. ~t. has 
as much openness about it with respect to detem1ining occurrent properties. 
as does our own claim about the capacity. 

7 Nomological machines and the limits of science 

I have been defending the claim that facts about capacities and how they 
operate are as much a part of the world as pictured by the exact sciences as 
are facts about occurrent properties and measurable quantities. One may be 
inclined to query what all the fuss is about. Once we have forsaken the 
impressions-and-ideas theory of concept formation defended by Hume and 
all forms of sense-data theories as well. how are we to draw a distinction 
between facts about occurrent properties and ones about capacities in the first 
place? 

I have no qualms about giving up the distinction. But in doing so we must 
not lose sight of one important feature of capacities that affects our doctrines 
about the limits of science. There is no fact of the matter about what a system 
can do just by virtue of having a given capacity . What it does depends on its 
setting, and the kinds of settings necessary for it to produce systematic and 
predictable results are very exceptional. I have argued here that it takes a 
nomological machine to get a regularity. But nomological machines have 
very special structures. They require the conditions to be just right for a 
system to exercise its capacities in a repeatable way. and the empirical indica­
tions suggest that these kinds of conditions are rare. No matter how much 
knowledge we might come to have about particular situations. predictability 
in the world as it comes is not the nonn but the exception. So we should 
expect regularities to be few and far between. If we want situations to be 
predictable. we had better engineer them carefully. 
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