
 1

Class III HD-ZIPs govern vascular cell fate: An HD view on patterning and 1 

differentiation 2 

 3 

Running title: HD-ZIP III transcription factors and vascular development 4 

 5 

Authors:  6 

Prashanth Ramachandran1; prashanth.ramachandran@ebc.uu.se  7 

Annelie Carlsbecker1; annelie.carlsbecker@ebc.uu.se 8 

J. Peter Etchells2; peter.etchells@durham.ac.uk 9 

 10 

Corresponding authors:  11 

J. Peter Etchells; peter.etchells@durham.ac.uk; tel: +44 (0)191 334 1237 12 

Annelie Carlsbecker; annelie.carlsbecker@ebc.uu.se; tel: +46 (0)18 673375 13 

 14 

Addresses: 15 

1 Physiological Botany, Department of Organismal Biology and Linnean Centre for Plant 16 

Biology in Uppsala, Uppsala University, Ulls väg 24E, SE-756 51 Uppsala, Sweden 17 

2  Department of Biosciences, Durham University, South Road, Durham, DH1 3LE 18 

 19 

Date of submission: 4th August, 2016 20 

Number of Tables and Figures: 7 21 

Word count: 8153 22 

  23 



 2

Highlight 24 

Multiple aspects of plant vascular development are controlled by HD-ZIP III transcription 25 

factors. This review highlights factors that control, and are controlled by HD-ZIP III’s to 26 

coordinate vascular morphogenesis. 27 

 28 

Abstract 29 

Plant vasculature is required for the transport of water and solutes throughout the plant body. 30 

It is constituted of xylem, specialised for transport of water, and phloem, that transports 31 

photosynthates. These two differentiated tissues are specified early in development and arise 32 

from divisions in the procambium, which is the vascular meristem during primary growth. 33 

During secondary growth, the xylem and phloem are further expanded via differentiation of 34 

cells derived from divisions in the cambium. Almost all of the developmental fate decisions 35 

in this process, including vascular specification, patterning and differentiation are regulated 36 

by transcription factors belonging to the class III homeodomain-leucine zipper (HD-ZIP III) 37 

family. This review draws together the literature describing the roles that these genes play in 38 

vascular development, looking at how HD-ZIP III’s are regulated, and how they in turn 39 

influence other regulators of vascular development. Themes covered vary, from interactions 40 

between HD-ZIP III’s and auxin, cytokinin, and brassinosteroids, to the requirement for 41 

exquisite spatial and temporal regulation of HD-ZIP III expression through microRNA 42 

mediated post transcriptional regulation, and interactions with other transcription factors. The 43 

literature described places the HD-ZIP III family at the centre of a complex network required 44 

for initiating and maintaining plant vascular tissues. 45 

 46 

Key words 47 

auxin, (pro)cambium, cytokinin, HD-ZIP III, miR165/166, root, shoot, transcription factors, 48 

vascular development, xylem 49 

 50 
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Introduction  52 

Homeodomain transcription factors have been synonymous with regulation of development 53 

since their identification in patterning of the fly more than 30 years ago. In plants, members 54 

of the class III homeodomain-leucine zipper (HD-ZIP III) transcription factor family are an 55 

excellent example of the incredibly broad range of developmental processes that HD 56 

transcription factors regulate. HD-ZIP III’s act from cradle to grave, with roles in patterning 57 

of the embryo, meristem maintenance, leaf development, inflorescence architecture, ovule 58 

development, growth response to environmental signals, and senescence. Characterization of 59 

mutations in REVOLUTA, one of five HD-ZIP III genes present in the model plant 60 

Arabidopsis thaliana, represents the first description of the consequences of loss of HD-ZIP 61 

III function (Talbert et al., 1995). While this paper is notable for its description of the 62 

pleiotropic defects present in HD-ZIP III mutants, clues begin to emerge as to their 63 

importance in controlling vascular development. In particular, Talbert et al (1995) noted that 64 

there were changes to the numbers of xylem and phloem cells in rev mutants compared to 65 

wild type plants, accompanied by changes to fibre differentiation. In subsequent years our 66 

understanding of the role of REV, which is also known as INTERFASCICULAR FIBRELESS1 67 

or AMPHIVASAL VASCULAR BUNDLES1, and the other members of the HD-ZIP III family 68 

in Arabidopsis, Arabidopsis thaliana HOMEOBOX8 (ATHB8), PHABULOSA 69 

(PHB)/ATHB14, PHAVOLUTA (PHV)/ATHB9, and CORONA 70 

(CNA)/INCURVATA4/ATHB15, has been considerably elaborated in multiple aspects of 71 

vascular development. In this review we will describe in detail these roles in vascular 72 

patterning and xylem differentiation in both the shoot and root.   73 

 74 

1. Radial patterning of vascular tissues in the shoot  75 

Vascular tissue specification and differentiation occurs in the wider developmental context of 76 

organs such as the leaf, stem or root. Several HD-ZIP III mutants were initially identified in 77 

screens aimed at identifying regulators of leaf development, and these mutants also 78 

demonstrated vascular defects (McConnell and Barton, 1998; McConnell et al., 2001). 79 

Leaves are initiated at the flanks of the shoot apical meristem. They develop a specialised 80 

upper (adaxial or dorsal) side specialised for light capture, and a lower (abaxial or ventral) 81 

side specialised for gas exchange. The vascular strands are typically positioned where the 82 

adaxial and abaxial domains meet. Xylem is present in the adaxial position and phloem is 83 

positioned abaxially. The question of how these specific patterns arise in the leaf was 84 

addressed in early experiments, where the initiating leaf primordium was surgically separated 85 
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from the apical meristem from which it arose. The aim of these experiments was to determine 86 

if all information required for normal leaf formation is present within the initiating 87 

primordium or if leaf patterning requires communication with the meristem (Sussex, 1954). 88 

These experiments are pertinent to understanding vascular development within the shoot as 89 

they also represent some of the first observations of changes in vascular patterns. In a series 90 

of elegant papers in the 1950’s, Sussex demonstrated that radially symmetric leaves were the 91 

consequence of surgically separating initiating primordia from the apical meristem in potato, 92 

arguing that a mobile signal emanating from the apical meristem must be involved in leaf 93 

patterning. Within these radially symmetric leaves, the vascular tissues were also clearly 94 

perturbed (Sussex, 1955). Subsequently, results in similar experiments using willowherb 95 

(Epilobium) also resulted in radialised leaves that lacked xylem-phloem asymmetry (Snow 96 

and Snow, 1959)(Figure 1A-C).  97 

 98 

The first paper to place the observations of asymmetry-loss in a genetic context made use of 99 

the snapdragon (Antirrhinum) phantastica (phan) mutants, which had radialised leaves 100 

similar to those observed in the surgical experiments (Figure 1D-E). Phan was described as a 101 

“dorsalising factor”, i.e. a gene that specifies the upper (and therefore xylem) side of the leaf 102 

(Waites and Hudson, 1995). Phan encodes a myb transcription factor (Waites et al., 1998), 103 

and its Arabidopsis orthologue ASYMMETRIC LEAVES 1 (AS1) (Byrne et al., 2000) was 104 

subsequently shown to act as a positive regulator of the expression of PHB, PHV and REV 105 

(Fu et al., 2007)(Figure 2). Such observations were consistent with phenotypes of dominant 106 

gain-of-function phb-1d (Figure 1F-I) and phv-1d alleles, which had earlier been described as 107 

having amphivasal vascular bundles with xylem surrounding phloem, i.e. xylem present in 108 

both adaxial and abaxial positions and therefore gain of adaxial identity (McConnell and 109 

Barton, 1998; McConnell et al., 2001). This phenotype is opposite to that observed in loss-of-110 

function phan, which has amphicribal bundles where phloem surrounds xylem (thus 111 

demonstrating a loss of adaxial identity) (Waites and Hudson, 1995). Cloning of the gain-of-112 

function phb and phv alleles enabled comparisons of sequences with previously described 113 

genes. Similarities were found with ATHB8, an early marker of vascularisation (Baima et al., 114 

1995), and with REV. While dominant phb-1d and phv-1d alleles demonstrated the most 115 

dramatic loss of asymmetry due to the presence of xylem in positions where phloem might be 116 

expected to form (Figure 1I), loss of function alleles demonstrated only subtle, if any, 117 

aberrations as single mutants. However, multiple HD-ZIP III knockouts resulted in 118 

phenotypes converse to those observed in the dominant alleles, i.e. phloem present in 119 
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positions where xylem forms in wild type (Emery et al., 2003; Prigge et al., 2005). The 120 

influence of the five HD-ZIP III genes on asymmetry determination is not equal. The 121 

phylogenetically relatively closely related PHB, PHV and REV clearly play predominant 122 

roles, but their paralogous couple ATHB8 and CNA may also contribute to the radial 123 

patterning process as ATHB8 over-expression leads to an increase in the formation of xylem 124 

tissue (Baima et al., 2001), and the dominant icu4 alleles of CNA display some characteristics 125 

of plants with changes to adaxial-abaxial asymmetry (Ochando et al., 2008; Ochando et al., 126 

2006). All five HD-ZIP III genes therefore, to a greater or lesser extent promote adaxial (and 127 

therefore xylem) identity within the leaf. Both gain-of-function and loss-of-function HD-ZIP 128 

III mutants also demonstrate radial patterning defects in the stem with dominant alleles 129 

characterised by xylem surrounding phloem, and recessive alleles by phloem surrounding 130 

xylem (Emery et al., 2003). 131 

 132 

2. miRNA-mediated restriction of HD-ZIP III activity domains 133 

Following their initial identification, a mechanistic understanding of the nature of dominant 134 

HD-ZIP III alleles was a matter of some speculation. Gain-of-function HD-ZIP III alleles 135 

have mutations that disrupt a steroidogenic acute regulatory protein-related lipid transfer 136 

(START) domain thought to be involved in hydrophobic ligand binding. This led to the 137 

hypothesis that a change to the regulatory function of the START domain (e.g. changes to 138 

putative ligand binding) may have occurred. However, following the discovery of RNA 139 

interference and identification of components of the microRNA (miRNA) machinery, it 140 

became apparent that mutations in the dominant alleles were also present in the sequence 141 

complementary to miRNA’s 165 and 166 (miR165/166; Figure 3A), suggesting that HD-ZIP 142 

III’s are subject to post transcriptional gene silencing (Reinhart et al., 2002; Rhoades et al., 143 

2002). Consistent with this idea, transgenic plants engineered to have silent mutations 144 

disrupting the miRNA target site in PHB or REV without resulting in protein sequence 145 

changes displayed gain-of-function phenotypes (Emery et al., 2003; Mallory et al., 146 

2004)(Figure 3B-D). In experiments using wheat germ extract, it was demonstrated that wild 147 

type PHB and PHV mRNA, but not that of the dominant mutants was subject to cleavage, 148 

demonstrating that RNAi can negatively regulate HD-ZIP III transcript abundance (Mallory 149 

et al., 2004; Tang et al., 2003), in line with the increased levels of PHB expression detected in 150 

both adaxial and abaxial domains of phb-1d leaves (McConnell et al., 2001). Furthermore, 151 

HD-ZIP III mRNA is expressed ectopically in RNAi machinery mutants, such as argonaute1 152 

(ago1) (Kidner and Martienssen, 2005) or serrate (se) (Lobbes et al., 2006).  153 
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 154 

Consistent with a role in asymmetry patterning miR165 and 166 are found on the abaxial 155 

side, and in developing phloem of the leaf primordium in both Arabidopsis and maize. The 156 

maize rolled leaf1 (rld1) mutant bears a mutation in the miRNA target site of a REV 157 

homologue (Juarez et al., 2004b), resulting in adaxialisation and overexpression of the rld1 158 

gene. Thus, vascular patterning of leaves and stems rely on HD-ZIP III expression being 159 

restricted through miRNA mediated removal of HD-ZIP III mRNA from abaxial domains in 160 

both eudicots and monocots. Interestingly, in situ hybridization of miR166 localization in the 161 

maize leaf primordium revealed a dynamic and graded distribution on the abaxial/phloem 162 

side of the leaf, leading Juarez et al. (2004a) to note that it behaved as a movable signal.  163 

 164 

Focussing of miR166 to the abaxial side of the maize leaf is thought to be the result of the 165 

action of trans-acting short-interfering RNAs (ta-siRNAs; for review see Chitwood et al., 166 

2007). Briefly, in contrast to conventional miRNA directed cleavage which results in the 167 

degradation of the target mRNA (e.g. miR165/166 action on HD-ZIP III transcripts described 168 

above), cleavage of a non-coding TAS RNA enables it to become a target for RNA-dependent 169 

RNA polymerases. The resulting double stranded RNA is subject to further processing from 170 

which 21 bp ta-siRNA’s are generated. ta-siRNA’s guide cleavage of mRNA targets in a 171 

similar manner to miRNA’s. ta-siRNA’s are derived from miRNA action on non-coding TAS 172 

transcripts. In Arabidopsis, ta-siRNA’s, derived from TAS3 that has been subjected to 173 

cleavage by miR390, negatively regulate ETTIN (ETT), also known as AUXIN RESPONSE 174 

FACTOR3 (ARF3) and ARF4, two genes that act redundantly in abaxial leaf identity 175 

(Chitwood et al., 2007). In maize, LEAFBLADELESS1 (LBL1) encodes a zinc finger protein 176 

required for the generation of ta-siRNA’s, and in lbl1 mutants, the localisation of miR166 is 177 

no longer restricted to the abaxial domain of the initiating leaf primordium, but is expressed 178 

throughout. lbl mutants demonstrate a clear loss of adaxial-abaxial asymmetry (Nogueira et 179 

al., 2007), consistent with downstream changes to levels of HD-ZIP III transcript (Nogueira 180 

et al., 2009). One possibility is that these small RNA’s could act non-cell autonomously and 181 

thus are candidates for the “Sussex signal”, proposed in the early surgical experiments 182 

described above that are involved in crosstalk between the shoot apical meristem and 183 

initiating leaf primordium (Chitwood et al., 2007).  184 

  185 

Disruption of the interactions between miRNA and mRNA target has provided particular 186 

insight into the roles that HD-ZIP III’s play in vascular tissue formation. HD-ZIP III’s are 187 
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required for vascular tissue in the leaves as over expression of one of the two genes encoding 188 

miR165, MIR165A, results in leaves that entirely lack vascular tissue (Zhou et al., 2007). An 189 

activation tagging line, jabba-1d (jba-1d) that resulted in increases in expression of 190 

MIR166G, one of the seven miR166 encoding genes, had concomitant reductions in PHB, 191 

PHV and CNA expression. Counter intuitively however, increases in REV expression were 192 

also observed in this line, leading to the hypothesis that other HD-ZIP III genes may repress 193 

REV (Williams et al., 2005). Interestingly, in high throughput yeast one hybrid (YIH) 194 

experiments, PHV was reported to bind to the REV promoter (Taylor-Teeples et al., 2015) 195 

providing further evidence for such a regulatory relationship. Consistent with perturbation of 196 

miRNA - HD-ZIP III homeostasis being required for vascular pattern, jba-1d mutants 197 

demonstrate changes to vascular organisation. In inflorescence stems, ectopic radially 198 

symmetric vascular bundles are present in the centre of the stem that are characterised by 199 

xylem surrounding phloem. Collateral bundles in positions similar to those present in wild 200 

type also demonstrated changes to morphology (albeit to a lesser degree than those at the 201 

centre of the stem) (Williams et al., 2005). A second activation tag mutant, meristem 202 

enlargement1 (men1), in which MIR166A was overexpressed, demonstrated similar 203 

phenotypes (Kim et al., 2005). 204 

 205 

While HD-ZIP III mRNA’s are negatively regulated by miR165/166, miRNA’s are in turn 206 

negatively regulated by a member of the AGO family. In contrast to other AGO proteins, 207 

which cleave/silence small RNA targets, PINHEAD (PNH; also known as ZWILLE/AGO10) 208 

is thought to protect HD-ZIP III mRNA from silencing by sequestering miR165/166 (Zhang 209 

and Zhang, 2012). Such interactions have mainly been described in the embryo and shoot 210 

apical meristem (Zhou et al., 2015; Zhu et al., 2011), but might PNH preform a similar role in 211 

the vascular tissue? PNH expression in the embryo demonstrates maxima in both the apical 212 

meristem expression and in the central provascular cells. Later in development, expression is 213 

prominent in the adaxial side of developing leaves, and in the vascular tissue (Lynn et al., 214 

1999; Moussian et al., 1998). pnh mutants do not typically demonstrate changes to leaf vein 215 

asymmetry, however there is further evidence to suggest that PNH could carry out a similar 216 

function in vascular tissue. The pnh phenotype is enhanced by mutations at the asymmetric 217 

leaves2 (as2) locus, such that as2 pnh leaves demonstrate changes to vascular organisation 218 

(Liu et al., 2009). AS2 encodes a transcription factor that heterodimerises with, and is 219 

required for AS1 function (Lin et al., 2003; Semiarti et al., 2001; Xu et al., 2003). 220 

Consequently, the as2 pnh phenotype may be a combination of a failure to sequester 221 
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miRNA’s by PNH, and a failure to properly promote HD-ZIP III expression by AS2. 222 

Furthermore, PNH expression, driven from the ATHB8 promoter is sufficient to restore 223 

defects in pnh mutants, and while these experiments were used to demonstrate a requirement 224 

for focussing HD-ZIP III expression in the shoot apical meristem, one could also argue that 225 

the ATHB8::YFP-ZLL construct used in this analysis could focus HD-ZIP III expression in 226 

the provascular domain (Tucker et al., 2008). Interestingly, REV has been shown to rapidly 227 

promote transcription of PNH (Reinhart et al., 2013), perhaps indicating a positive feedback 228 

that could have the potential to canalise high REV levels by counteracting miR165/166’s 229 

(Figure 2). 230 

 231 

3. The HD-ZIP III’s act in a network of interactions  232 

Mechanisms of post-transcriptional regulation described above are critical in specifying the 233 

when and where of HD-ZIP III action. However, interactions between these genes and other 234 

factors also determine aspects of vascular development (Figure 2). One group of regulators 235 

are members of the LITTLE ZIPPER (ZPR) family of proteins that interact with HD-ZIP III 236 

proteins by forming complexes, likely through interactions at the zipper domain, and thereby 237 

preventing HD-ZIP III binding to DNA (Husbands et al., 2016; Kim et al., 2008; Wenkel et 238 

al., 2007). Overexpression of ZPR genes results in vascular defects including cellular 239 

proliferation adjacent to veins in the leaf and changes to xylem-phloem asymmetry. 240 

Furthermore, expression of ZPR1 and ZPR3 is clearly localised to the vascular tissue in the 241 

embryo and in developing leaves (Wenkel et al., 2007). In vitro studies suggest that ZPR 242 

proteins bind all five members of the HD-ZIP III family, while interactions with PHB and 243 

REV have been confirmed in planta (Kim et al., 2008).  244 

 245 

Genes of the KANADI family of GRAS-type transcription factors were shown a number of 246 

years ago to act in opposition to HD-ZIP III’s in radial patterning. In particular, where HD-247 

ZIP III’s specify the adaxial side of the leaf and the xylem side of the vascular tissue, KAN 248 

genes, of which there are four, specify the abaxial side of the leaf and the phloem side of the 249 

vasculature (Emery et al., 2003; Eshed et al., 2004; Kerstetter et al., 2001). Initially, it was 250 

not particularly clear how this opposition might occur, despite findings such as negative 251 

regulation of AS2 by KAN1 (Wu et al., 2008). A clearer picture began to emerge in the 252 

embryo, where the role of these opposing gene families was shown to control auxin flow 253 

(Izhaki and Bowman, 2007). Subsequent studies that focused on the vascular tissue built on 254 

these observations, suggesting that KAN genes were negative regulators of PIN-FORMED1 255 
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(PIN1) that encodes an auxin efflux carrier (Ilegems et al., 2010). The flow of auxin through 256 

preprovascular cells, as directed by PIN1, has been demonstrated to control the process of 257 

leaf venation (Scarpella et al., 2006). Strikingly, auxin is thought to induce expression of HD-258 

ZIP III’s (Baima et al., 1995; Zhou et al., 2007). HD ZIP III’s, in turn promote developmental 259 

changes that support canalisation of auxin as plants with reduced levels of HD-ZIP III 260 

expression were impaired in cell maturation, demonstrating defects in xylem differentiation 261 

and connection of cell files (Ilegems et al., 2010). Interestingly, data is now available that has 262 

identified direct, often antagonistic, transcriptional targets of REV and KAN1 (Huang et al., 263 

2014; Reinhart et al., 2013). Of particular note, genes including ALTERED PHLOEM (APL), 264 

required for phloem specification (Bonke et al., 2003), and CLE41 which encodes a phloem-265 

expressed signal required for vascular proliferation (Etchells et al., 2015; Etchells and Turner, 266 

2010), are negatively regulated by REV (Reinhart et al., 2013). In line with the antagonistic 267 

interaction between KANADIs and HD-ZIP III’s a direct repressive regulation of KAN1 on 268 

PHB and ATHB8 was found in one study (Merelo et al., 2013)(Figure 2). 269 

 270 

4. Cell-to-cell movement of miR165/166 pattern the root vasculature 271 

A radial section of the Arabidopsis root displays an anatomy with unusually few cells and a 272 

diarch xylem arrangement with peripheral protoxylem (with spiral or annular secondary cell 273 

wall thickenings) and central metaxylem (with reticulate or pitted walls) (Figure 4A). The 274 

xylem axis is flanked by procambium and a phloem pole on either side. The simplicity of the 275 

Arabidopsis root vascular anatomy allows for relatively easy detection of aberrant 276 

phenotypes. A screen for mutants with vascular defects thus picked up a novel dominant 277 

allele of PHB, phb-7d, that displayed metaxylem in the place of protoxylem (Carlsbecker et 278 

al., 2010) (Figure 4A). Interestingly, it was found that the short root (shr) and scarecrow 279 

(scr) mutants displayed a very similar vascular phenotype, and SHR had previously been 280 

shown to indirectly repress expression of PHB and PHV (Levesque et al., 2006). Supporting 281 

the notion that ectopic PHB expression caused the shr xylem phenotype, the shr phb double 282 

mutant had restored protoxylem formation. SHR is produced in the vasculature, but the 283 

protein is exported to the endodermal cell layer surrounding the vascular stele, where it 284 

activates SCR (Helariutta et al., 2000; Nakajima et al., 2001). In the endodermis SHR, 285 

together with SCR, activates the transcription of the three genes encoding miR165 and 286 

miR166 that are active in roots, MIR165A, MIR166A and MIR166B (Carlsbecker et al., 2010; 287 

Miyashima et al., 2011) (Figure 4B). 288 

 289 
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Analyses of transcriptional reporters in comparisons with RNA in situ hybridization and 290 

translational reporter assays revealed a post transcriptionally restricted activity domain of the 291 

HD-ZIP III genes, most apparent for PHB. Transcriptional reporters for PHB, CNA and REV 292 

are active throughout the stele, but mRNA and protein activity domains are focused to the 293 

central stele for PHB and CNA, while REV occupies the procambial domain (Carlsbecker et 294 

al., 2010; Lee et al., 2006; Miyashima et al., 2011). ATHB8 displayed transcription and also 295 

protein localization specific to the xylem axis. PHV had a close to non-detectable activity. 296 

The difference between transcriptional and translational reporters supports a miRNA-297 

mediated restriction of HD-ZIP III expression domains within the root vasculature. This is 298 

particularly evident for PHB and genetic analyses showed that ectopic PHB activity is 299 

primarily responsible for the vascular aberrations of shr and scr, although ATHB8 and CNA 300 

contribute. The post-transcriptionally restricted PHB domain suggested that the miRNA is 301 

active primarily in the peripheral stele. Indeed, a miR165-GFP-sensor revealed miR165-302 

activity particularly in these cells. Specifically driving miR165 in ground tissue in shr and scr 303 

restricted the ectopic PHB expression to the central stele, and restored the formation of 304 

protoxylem (Carlsbecker et al., 2010). Further support for an endodermal-mediated non-cell-305 

autonomous regulation of stele patterning came from an experiment where the phb-d 306 

phenotype, resulting from driving PHB with a mutated miRNA target site under its own 307 

promoter, was restored by driving a modified miRNA complementary to the altered PHB 308 

miRNA-site from an endodermis specific promoter (Miyashima et al., 2011). Hence, 309 

miR165/166 derived from the endodermis move several cells away to restrict the mRNA 310 

activity domain of the HD-ZIP III TFs (primarily PHB) within the stele, and thereby control 311 

vascular patterning (Figure 4B). 312 

 313 

The critical role of cell-to-cell trafficking in root vascular patterning was further confirmed 314 

by blocking plasmodesmata connections. Gain-of-function alleles of callose synthase 3 315 

(cals3-d) overproduce callose at plasmodesmata hindering macromolecular cell-to-cell 316 

passage. This results in a root vascular phenotype similar to that of a phb-d or shr mutant. In 317 

these lines, PHB is ectopically active throughout the stele and SHR movement into the 318 

endodermis fails (Vatén et al., 2011). Driving a dominant and inducible version of cals3 by 319 

tissue specific promoters further allowed Vatén et al. (2011) to analyse the consequence of 320 

blocking plasmodesmata connections between the ground tissue and the stele on miR165 321 

accumulation. In this experiment miR165 and callose synthase was simultaneously induced in 322 

the ground tissue of a shr mutant. In situ hybridization revealed that miR165 accumulated in 323 
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the ground tissue, compared to controls. Thus, these findings demonstrated plasmodesmata 324 

mediated cell-to-cell mobility of the miRNA.  325 

 326 

Ectopic expression of miR165 throughout the stele results in protoxylem forming in 327 

metaxylem positions in the xylem axis. In line with this, plants harbouring mutations in four 328 

of the five HD-ZIP III genes also display protoxylem throughout the xylem axis, while lower 329 

order mutants may display formation of a central metaxylem strand flanked by several 330 

protoxylem files (Carlsbecker et al., 2010) (Figure 4A). The quintuple HD-ZIP III mutant 331 

does not form xylem at all. These phenotypes, together with that of phb-d mutants where 332 

metaxylem replace protoxylem, indicate that HD-ZIP III transcription factors determine 333 

xylem cell identity in a dose-dependent fashion with high dosage resulting in metaxylem and 334 

lower dosage in protoxylem (Carlsbecker et al., 2010). Notably, phb-d not only affects xylem 335 

cell type formation, but also pericycle cell identity (Miyashima et al., 2011). Thus 336 

miR165/166 may form a morphogenetic gradient emanating from the endodermal cell layer, 337 

determining stele cell identity.  338 

 339 

5. HD-ZIP III activity intersects with auxin and cytokinin signalling for proper xylem 340 

patterning 341 

The HD-ZIP III-miRNA gradients in the root is overlayed by balanced auxin and cytokinin 342 

signalling domains shown to establish xylem and procambium cell identity, respectively 343 

(Bishopp et al., 2011) (Figure 4C). Multiple points of intersection between these two 344 

hormones and the HD-ZIP III transcription factors occur during root vascular patterning. 345 

Auxin biosynthesis is primarily tryptophan dependent, and consequently requires the enzyme 346 

TRYPTOPHAN SYNTHASE. Two alleles (trp2-12 and trp2-13) of the gene encoding the 347 

beta subunit (TSB1/TRP2) of this enzyme were identified from a screen for mutants with 348 

altered root vascular development. The trp2 mutants along with other auxin biosynthesis 349 

mutants that are defective in down-stream biosynthesis steps, such as the weak ethylene 350 

insensitive 8 tryptophan aminotransferase related 2 (wei8 tar2) double mutant or a quintuple 351 

yucca mutant, displayed defective metaxylem development and protoxylem formation in the 352 

metaxylem position, suggesting that auxin biosynthesis is required for mextaxylem formation 353 

(Ursache et al., 2014). A similar phenotype was observed in axr3-3, which harbours a gain-354 

of-function mutation in IAA17 that inhibits auxin signalling. The vascular defects in trp2 355 

were rescued by treatment with L-Trp while treatment with L-Kynurenine (Kyn), which 356 
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blocks TAA1/TAR mediated auxin biosynthesis, phenocopied the auxin biosynthesis mutants 357 

with the formation of protoxylem in metaxylem position. In line with the similarity of this 358 

phenotype to higher order HD-ZIP III mutants the expression of PHB, PHV, CNA and 359 

ATHB8 was greatly reduced in the trp2 mutants and upon Kyn treatment of the wild-type. 360 

Kyn resistance was brought about by driving PHB expression by an auxin non-responsive 361 

promoter. Taken together with the partial rescue of the phb-7d xylem phenotype by Kyn 362 

treatment, this revealed an auxin biosynthesis mediated, HD-ZIP III dependent, vascular 363 

development pathway required primarily for metaxylem formation (Ursache et al., 2014).  364 

 365 

The interconnection between HD-ZIP III and auxin was previously shown by the auxin 366 

inducible characteristic of ATHB8 (Baima et al., 1995). Studies on vascular patterning in the 367 

leaf showed that the accumulation of the DR5 auxin reporter preceded procambium 368 

formation, and was closely followed by activation of the auxin response factor 369 

ARF5/MONOPTEROS (MP) and ATHB8 (Mattsson et al., 2003). Donner et al. (2009) 370 

subsequently demonstrated that ATHB8 transcription is directly regulated by MP. However, 371 

neither in the leaf nor in the root meristem is there a precise correlation between domains of 372 

high auxin signalling and transcription domains of the five HD-ZIP III genes. Hence, other as 373 

of yet unidentified factors likely contribute to their activation and/or restriction. Efforts to 374 

identify gene regulatory networks around the HD-ZIP III genes may be probed for such 375 

candidates (Brady et al., 2011; Taylor-Teeples et al., 2015)(see also section 5 below).  376 

 377 

In the postembryonic root meristem, auxin response reporters suggest an auxin sink at the 378 

position of the immature xylem axis. The accumulation of auxin is brought about by polar 379 

auxin transport, via PIN1 and procambially localized PIN3 and PIN7 mediating lateral auxin 380 

transport. Inhibition of polar auxin transport by exogenous supply of N-1-naphthylphthalamic 381 

acid (NPA) lead to loss of protoxylem strand formation in a dose dependent manner (Bishopp 382 

et al., 2011)(Figure 4C). In the protoxylem domain, the auxin maximum activates 383 

ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6). AHP6 is an 384 

inhibitor of cytokinin signalling and in ahp6 mutants, the protoxylem strand integrity is 385 

affected similar to the wild type root subjected to exogenous cytokinin treatment, and 386 

protoxylem become replaced by procambial cells. On the other hand, cytokinin depletion or a 387 

block in cytokinin signalling lead to differentiation of all vascular cells as protoxylem 388 

(Mähönen et al., 2006). Therefore, inhibition of cytokinin signalling in the xylem axis is 389 

necessary for vessel formation and presence of cytokinin signalling in the procambial cells is 390 
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required for maintaining them in an undifferentiated state. Interestingly, the phb-7d mutant 391 

lacks expression of AHP6 while, in contrast, athb8 cna phb phv quadruple mutants 392 

demonstrate expansion of the AHP6 expression domain to the entire xylem axis (Carlsbecker 393 

et al., 2010)(Figure 4C). To predict the minimal molecular signalling circuits required for 394 

proper radial patterning in the Arabidopsis root Muraro et al. generated a mathematical model 395 

with which they were able to reconstitute a realistic radial pattern, but only by integrating 396 

SHR-miR165/166-PHB with the above described auxin and cytokinin signalling loop 397 

(Muraro et al., 2014). In their model, they predicted PHB to act as repressor of AHP6 398 

expression in the metaxylem domain. In support of this prediction, the expression of AHP6 399 

rapidly increases upon induction of miR165 (Müller et al., 2016), although it is unknown if 400 

this interaction is direct, or occurs via the effect that HD-ZIP III transcription factors have on 401 

auxin signalling.  402 

 403 

Several observations suggest that levels of HD-ZIP III transcription factors affect auxin 404 

signalling: Auxin signalling reporters revealed considerable increases in activity in the athb8 405 

cna phb phv mutant compared to the wild type while phb-7d mutants displayed severely 406 

impaired auxin signalling in the xylem axis not possible to revive by exogenous auxin 407 

treatments (Müller et al., 2016). Similarly, up-regulation of miR165 resulted in a wider auxin 408 

reporter expression domain, and a number of core auxin signalling genes were increased, 409 

along with a down-regulation of primarily PHB, PHV, and CNA (Ilegems et al., 2010; Müller 410 

et al., 2016). However, despite being auxin inducible, MP, IAA20, and IAA30 were down-411 

regulated upon miR165 induction and PHB was also found to bind the promoters of MP and 412 

IAA20 in vivo, suggesting that PHB is required at their promoters for proper activation 413 

(Müller et al., 2016). In contrast to most AUX/IAA proteins, IAA20 and IAA30 lack the 414 

canonical domain II, recognised by the auxin/TIR receptor complex, and are therefore not 415 

degraded even in the presence of high auxin levels. Their interactions with AFRs, however, 416 

are not altered, and they may therefore act as ARF scavengers and dampen auxin signalling 417 

(Sato and Yamamoto, 2008). The double mutant iaa20 iaa30 displays formation of extra 418 

protoxylem strands suggesting that a balanced auxin response is required for proper root 419 

vascular patterning (Müller et al., 2016). Similarities in the phenotypes of a weak mp mutant 420 

and lines overexpressing IAA30, indicate that IAA30 (and IAA20) likely represses the 421 

activity of MP. Activation by PHB (and other HD-ZIP III’s) of components both promoting 422 

and suppressing auxin signalling may balance vascular auxin response and genetic data 423 

suggests that this is promoting a stable xylem axis patterning. 424 
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 425 

Thus, several studies show a tight link between HD-ZIP III transcription factors and auxin 426 

signalling on many different levels (recently reviewed by Turchi et al., 2015). A direct 427 

binding of REV to the promoters of the auxin influx carriers AUX1, LAX2 and LAX3 was 428 

identified (Baima et al., 2014; Huang et al., 2014), and the expression of these genes was 429 

significantly altered upon the induction of miR165 in the root and shoot (Baima et al., 2014; 430 

Müller et al., 2016). The triple aux1 lax1 lax2 mutant has aberrant protoxylem formation (El-431 

Showk et al., 2015), and along with previously mentioned results obtained by blocking polar 432 

auxin transport, this supports the notion that the activity of both auxin influx and efflux 433 

carriers is required to attain sufficient auxin accumulation for proper protoxylem and 434 

metaxylem formation. As a consequence of auxin accumulation in the xylem axis a number 435 

of downstream genes that play a role in xylem cell specification and differentiation are 436 

switched on (see below).  437 

 438 

6. A role for HD-ZIP III genes in restricting procambial cell proliferation? 439 

In the embryo, the first vascular cells are initiated in the central globular staged embryo 440 

(Scheres et al., 1995). Analyses of expression revealed presence of REV, PHB, PHV and CNA 441 

expression in apical parts of the embryo from early globular stage, while ATHB8 appears a 442 

little later, at the early heart stage, in the provascular cells where it is later joined by the other 443 

family members (Baima et al., 1995; Prigge et al., 2005; Smith and Long, 2010). Thus, 444 

although expression of the HD-ZIP III genes are initiated early their activity domains are not 445 

perfectly overlapping that of the first vascular cells, suggesting that their activity in the 446 

procambium follows the initiation of the first vascular cells. A pathway mediated by 447 

TARGET OF MONOPTEROS 5 (TMO5) along with its interaction partner LONESOME 448 

HIGHWAY (LHW) controls periclinal cell divisions in the embryo essential for the radial 449 

vascular axis and also for the maintenance of vascular cell number in the post-embryonic root 450 

meristem (De Rybel et al., 2013; Ohashi-Ito et al., 2013) (Figure 4C). Alterations in cell 451 

number have been attributed to shifts in the auxin-cytokinin balance as long term treatment 452 

with NPA increases the vascular cell number and subsequently the number of xylem poles 453 

(Bishopp et al., 2011), while impaired cytokinin signalling results in reduced procambial cell 454 

proliferation (Mähönen et al., 2000). TMO5 and its homolog TMO5-LIKE1 (T5L1) express 455 

specifically in the xylem axis. As dimers with LHW they directly control the expression of 456 

the rate limiting cytokinin biosynthesis genes LONELY GUY3 (LOG3) and LOG4 (De Rybel 457 
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et al., 2014; Ohashi-Ito et al., 2014), which would serve to increase cytokinin levels in the 458 

xylem axis. However, cytokinin reporters reveal that signalling primarily occurs in the 459 

procambium. Potentially, activation of AHP6 by T5L1/LHW may restrict the effect of 460 

cytokinin from the xylem domain (Ohashi-Ito et al., 2014). However, AHP6 is not active in 461 

the central metaxylem/PHB-activity domain of the xylem axis. It is possible that PHB 462 

contributes by other means to the reduced cytokinin responsiveness of these cells; a recent 463 

publication may provide a possible mechanism, as it was found that PHB can prevent the 464 

activity of B-type response regulators (B-ARRs) potentially by preventing B-ARR DNA 465 

binding, especially under high cytokinin level conditions (Sebastian et al., 2015). The role for 466 

PHB and the other HD-ZIP III transcription factors as potential regulators of procambial cell 467 

proliferation needs to be substantiated by more research, however, several observations 468 

suggest a role for the HD-ZIP III’s in regulating procambial cell divisions. The athb8 cna phb 469 

phv mutant has a significant increase in the number of root procambial cells compared to wild 470 

type, resulting in a triarch or tetrarch vascular arrangement. Driving miR165 in the stele also 471 

causes a similar increase in the number of vascular cells (Carlsbecker et al., 2010; Ilegems et 472 

al., 2010). Conversely, the phb-d alleles contain fewer stele cells (Carlsbecker et al., 2010). 473 

While there are as yet only clues as to how HD-ZIP III’s might ultimately regulate this 474 

process, one possibility is that HD-ZIP III’s expression in the procambium may be regulated 475 

by DOF transcription factors. Seven different DOF genes were found to interact with the 476 

promoters of PHB and PHV, and in certain cases a single DOF could act as activator of one 477 

HD-ZIP III gene while repressing another (Brady et al., 2011) (Figure 2). DOF-TFs are 478 

expressed early in procambium formation in the leaf (Gardiner et al., 2010), and some 479 

members of the gene family, act to control vascular cell-division (Guo et al., 2009); see (Le 480 

Hir and Bellini, 2013) for review. Complex networks of interactions such as this are present 481 

around HD-ZIP III TFs as shown in transcriptional regulatory network analysis for both the 482 

stele and xylem (Brady et al., 2011; Taylor-Teeples et al., 2015). The connections in such 483 

networks point to interesting regulatory relationships. In the case of DOF regulation of PHB 484 

and PHV, further work is required to understand the significance of this interaction.  485 

 486 

7. HD-ZIP III regulated differentiation of xylem cells 487 

While the analysis HD-ZIP III function described above looks at changes to vascular 488 

patterning and organisation, HD-ZIP III’s also function post-patterning, in particular in 489 

differentiation of the xylem. Early work on the role of REV in xylem differentiation followed 490 
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the independent isolation of REV loss-of-function alleles by Zhong and Ye (ifl alleles of rev) 491 

(Zhong et al., 1997; Zhong and Ye, 1999) in screens that aimed to identify mutants with 492 

xylem defects. Zhong and Ye noted that while vascular bundles in inflorescence stems of rev 493 

mutants demonstrated few differences when compared to wild type close to the shoot apex, in 494 

basal parts of the inflorescence stem, rev vascular bundles were characterised by fewer cells 495 

(Figure 5). The xylem in inflorescence stem vascular bundles is typically constituted of two 496 

cell types that have large secondary cell walls. Xylem vessels transport water, and smaller 497 

xylary fibres provide mechanical support. While xylem vessels were present in rev mutants, 498 

xylary fibres were reduced in weaker alleles, or absent in strong alleles (Zhong and Ye, 499 

1999)(Figure 5). Outside the vascular bundles, a reduction in the number of interfascicular 500 

fibres was also observed, and this loss of fibres in rev mutants results in large reductions in 501 

breaking force (Zhong et al., 1997). It has been suggested that in fibres, the rev phenotype is 502 

a result of failure to differentiate such that secondary cell wall material is not deposited, 503 

rather than a failure in fibre specification (Lev-Yadun et al., 2004). The role that REV has in 504 

specification of terminal xylem differentiation is influenced by KNOTTED-LIKE 505 

HOMEOBOX OF ARABIDOPSIS THALIANA 7 (KNAT7) and BEL1-LIKE 506 

HOMEODOMAIN 6 (BLH6) (Figure 6). These homeodomain transcription factors form a 507 

heterodimer that binds to the promoter of, and negatively regulates, REV expression. 508 

Consequently, knat7 blh6 double mutants demonstrate large increases in REV expression that 509 

are accompanied by increases in secondary cell wall thickness (Liu et al., 2014). These 510 

results support the role of REV as a positive regulator of xylem cell wall deposition, 511 

specifically in fibres and are consistent with observations that rev mutants have reduced 512 

secondary walls in fibres. Rather surprisingly, in contrast to fibre walls that are thicker in 513 

knat7 blh6 lines (Liu et al., 2014), vessel secondary walls, and in particular those of knat7 514 

mutants are thinner than those of wild type counterparts, such that the vessels collapse due to 515 

a failure to withstand the negative pressures of water transport (Li et al., 2012). The KNAT7-516 

BLH6-REV interaction consequently does not appear to act in xylem vessels, at least not in 517 

the same way that it regulates wall deposition in fibres. One explanation of this phenotype is 518 

that KNAT7/BLH6 acts independently from REV in vessel element differentiation.  519 

 520 

A number of observations have supported a role for other members of the HD-ZIP III family 521 

as having roles in xylem development and differentiation. Analysis of HD-ZIP III expression 522 

in Zinnia elegans leaves found that REV homologues, ZeHB11 and ZeHB12 demonstrated 523 

xylem expression, as did ATHB8 and CNA orthologues (ZeHB-10 and ZeHB-13, 524 
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respectively), albeit in an expression domain consistent with these genes having a role in 525 

early xylem specification, rather than in deposition of cell wall polymers (Ohashi-Ito and 526 

Fukuda, 2003). Such a hypothesis is supported by the observation that constitutive over-527 

expression of MIR165B, which results in reductions in CNA expression, and likely that of 528 

other HD-ZIP III’s leads to ectopic deposition of secondary cell wall material in the pith of 529 

Arabidopsis stems (Du et al., 2015). Subsequent work, which tested genetic redundancy 530 

between rev and the other HD-ZIP III transcription factors, showed that phb and phv were 531 

strong enhancers of the rev phenotype in the xylem; in extreme cases rev phb/+ and rev phv 532 

mutants displayed vascular bundles with remarkably few lignified cells (Prigge et al., 2005). 533 

In contrast, lignification of xylem tissue and interfascicular fibres was restored in athb8 cna 534 

rev triple mutants, i.e. athb8 cna suppressed the rev phenotype. The idea that ATHB8 and 535 

CNA have distinct functions to those of PHB, PHV and REV is supported by experiments in a 536 

rev mutant background where expression of HD-ZIP III family members was driven from the 537 

REV promoter. While REV::REV, REV::PHB, and REV::PHV constructs rescued the rev 538 

mutant phenotype. REV::ATHB8 and REV::CNA did not (Prigge et al., 2005). Taken 539 

together, these observations suggest that early xylem specification may be controlled by 540 

ATHB8 and CNA, while differentiation to mature xylem is repressed by these genes. In 541 

contrast, REV, PHV and PHB are positive regulators of the final stages of xylem 542 

differentiation.   543 

 544 

The roles of HD-ZIP III genes in xylem specification and differentiation have been confirmed 545 

by experiments that have looked for HD-ZIP III regulators and targets. The phytohormone 546 

brassinosteroid (BR) has been implicated as a regulator of wide-ranging aspects of vascular 547 

development, both in terms of regulation of number and position of vascular bundles (Caño-548 

Delgado et al., 2010), and xylem differentiation (Cano-Delgado et al., 2004; Yamamoto et al., 549 

2001) (Figure 6). In xylogenic cultures, levels of BR have been shown to dramatically 550 

increase at a time point corresponding to entry into the final stages of xylem differentiation. 551 

Rapid induction of REV homologue transcripts, ZeHB11 and ZeHB12, occurs upon BR 552 

treatment. In contrast, expression of the same transcripts is repressed upon treatment with 553 

uniconazole, a BR inhibitor (Ohashi-Ito and Fukuda, 2003; Yamamoto et al., 2001; 554 

Yamamoto et al., 2007). Intriguingly, the behaviour of the ATHB8 orthologue ZeHB10 is 555 

similarly regulated, and while ZeHB13, a CNA orthologue, is not repressed upon perturbation 556 

of BR signalling, its expression is also increased upon BR induction (Ohashi-Ito and Fukuda, 557 

2003). This begs the question of how apparently opposing functions of ATHB8/CNA and 558 
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PHB/PHV/REV might be reconciled? The answer likely lies in the position that each gene 559 

controls within a complex network. ACAULIS5 (ACL5) is a gene encoding a thermospermine 560 

synthase, which has been shown to negatively regulate xylem differentiation. acl5 mutants 561 

are characterised by early terminal differentiation of xylem that results in programmed cell 562 

death prior to xylem expansion and deposition of a full secondary cell wall (Muñiz et al., 563 

2008). ATHB8 acts together with auxin as a direct positive regulator of ACL5 which, in turn, 564 

slows xylem differentiation, in part by negative regulation of REV (Baima et al., 2014). 565 

Intriguingly, it was recently found that ACL5 also activates proteins capable of counteracting 566 

the cell-proliferation promoting effect of TMO5/LHW (Vera-Sirera et al., 2015) (Figure 4C). 567 

ATHB8 together with auxin, therefore, also regulates vascular cell divisions. 568 

 569 

Consistent with the idea that ATHB8 is a negative regulator of xylem differentiation, other 570 

signalling pathways that act in the procambium to maintain the vascular meristem are thought 571 

to positively influence ATHB8 expression. TRACHEARY ELEMENT DIFFERENTIATION 572 

INHIBITORY FACTOR (TDIF) and PHLOEM INTERCALATED WITH XYLEM 573 

(PXY)/TDIF RECEPTOR (TDR) are a ligand-receptor pair that act both to maintain cell 574 

division in, and exclude xylem differentiation from, the procambium. Seedlings grown in 575 

liquid media containing TDIF ligand, and plants overexpressing CLAVATA3/ESR-RELATED 576 

41 (CLE41; a gene from which TDIF is derived), demonstrate increases in ATHB8 expression 577 

(Etchells and Turner, 2010; Hirakawa et al., 2008; Ito et al., 2006) (Figure 6), which supports 578 

the idea that ATHB8 acts to slow xylem differentiation. 579 

 580 

Genetic analysis has supported a function for REV, PHB and PHV in promoting xylem 581 

differentiation as described above. These observations were supported by recent experiments 582 

suggesting that REV (and PHV) both bind to the promoter of the xylem master regulator 583 

VASCULAR-RELATED NAC DOMAIN7 (VND7) (Figure 6). In assays where constructs 584 

containing the VND7 promoter controlling expression of a luciferase reporter (LUC), were 585 

co-bombarded into Arabidopsis leaves with a 35S::REV construct, a 3-fold increase in 586 

promoter activity was observed compared to controls (Endo et al., 2015). Expression of 587 

VND7 has previously been shown to result in adoption of xylem fate (Kubo et al., 2005). This 588 

leads to a model whereby adjacent to the procambium, where ATHB8/CNA show expression 589 

maxima, the xylem differentiation process is slowed by positive regulation of ACL5. 590 

However, expression of ATHB8/CNA and consequently ACL5 expression is lowered further 591 
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from the procambium. Therefore REV (and possibly PHB and PHV) would be released from 592 

this negative regulation by ACL5, enabling promotion of expression of VND7.  593 

 594 

The HD-ZIP III transcription factors lie at the centre of a network that is required to fine-tune 595 

dynamic changes in gene expression throughout vascular development. High throughput YIH 596 

screens have recently been used to place PHB, PHV and REV in a network that regulates 597 

secondary cell wall deposition. Interactions within this network include both VND7 and PHV 598 

binding to the promoter of REV, hinting at complex regulatory mechanisms. In particular, 599 

VND7 was reported to negatively regulate REV expression. REV, in turn, binds to the 600 

promoter and negatively regulates the expression of PHENYLALANINE AMMONIA LYASE4 601 

(PAL4) (Taylor-Teeples et al., 2015), a gene involved in lignin biosynthesis (Sewalt et al., 602 

1997). However, as REV has previously been reported to positively regulate expression of 603 

VND7 (Endo et al., 2015), these results suggest that an understanding at cell-type specific 604 

resolution is required to understand how these interactions control commitment to xylem 605 

differentiation, fibre formation, and deposition of the secondary cell wall.  606 

 607 

8. HD-ZIP III regulation of wood formation in trees 608 

In tree species such as poplar, vascular tissue expansion is present in a continuous ring in the 609 

stem and is the main driver of secondary growth. It is clear that the HD-ZIP III family have 610 

an important role in regulating this process as REV, CNA and ATHB8 orthologues, 611 

popREVOLUTA (PRE), POPCORONA (PCN), and PtrHB7 are expressed in poplar vascular 612 

tissue, and perturbations to the expression of these genes leads to defects in organisation and 613 

wood deposition (Du et al., 2011; Robischon et al., 2011; Zhu et al., 2013). While transgenic 614 

trees over-expressing a microRNA-resistant form of PCN had relatively subtle defects 615 

including early onset of secondary growth (Du et al., 2011), phenotypes of miRNA-resistant 616 

PRE over-expressers demonstrated much more dramatic phenotypes, including areas of 617 

xylem present on both sides of the cambium. This is in contrast to wild type poplar (and other 618 

woody species), where xylem is strictly restricted to the inner side of the cambium 619 

(Robischon et al., 2011). In another experiment, over expression in poplar of the native REV-620 

homologue also resulted in reduction in fibre to vessel ratio and associated changes in many 621 

genes relating to cell wall synthesis (Côté et al., 2010). Interestingly, genome wide 622 

association studies identify links between the multiple splice variants in the 3’ end of the REV 623 

locus and wood cellulose content in poplar (Porth et al., 2014). One of the striking features of 624 

perennial woody plants are the annual rings that form in the wood due to differences in 625 
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seasonal growth. In hybrid aspen, miR166 has been shown to be seasonally regulated, with a 626 

large peak in expression in the winter months. Elevated winter miR166 coincides with 627 

reductions in expression of PtaHB1, a REV orthologue (Ko et al., 2006), suggesting that 628 

seasonal control of REV-directed wood development is at least in part via miR166 regulation. 629 

It may be interesting to observe the roles that HD-ZIP III’s and miRNA’s might have in 630 

patterning of plants with unusual cambial organisations for example those with included 631 

phloem such as Avicennia and Bougainvillea (Studholme and Philipson, 1966; Zamski, 632 

1979), or plants that develop phloem wedges, such as members of the Bignonieae (Pace et al., 633 

2009; Spicer and Groover, 2010). Aside from miRNA mediated regulation of HD-ZIP III’s, 634 

other regulatory interactions are likely to be conserved across plants with differing growth 635 

habits. One such regulatory interaction is that between PttHB8 (an ATHB8 orthologue) and 636 

poplar ACL5 (POPACAULIS5). POPACAULIS5 represses PttHB8 expression, while in 637 

contrast PttHB8 promotes expression of POPACAULIS5 expression, suggesting that 638 

thermospermine levels and PttHB8 expression are balanced by feedback control (Milhinhos 639 

et al., 2013). Conifers and other gymnosperms also display extensive secondary development, 640 

and also here HD-ZIP III transcripts are associated with secondary xylem (Côté et al., 2010; 641 

Duval et al., 2014). However, in conifers the xylem tissues contain only tracheids, while 642 

vessels and fibres are missing. Potentially reflecting this, conifers have relatively few NAC-643 

domain-containing VND-homologues, while this gene family has expanded considerably in 644 

angiosperms (Nystedt et al., 2013). A recent study employing Agrobacterium mediated 645 

transformation of embryonic spruce cells to test for promoter-transcription factor interactions 646 

in planta in a semi-high throughput manner found evidence for the regulation of multiple 647 

genes regulating secondary cell wall formation by a NAC-domain transcription factor (Duval 648 

et al., 2014), including interaction with a homologue to the angiosperm HD-ZIPIII genes 649 

from Picea glauca. However, the NAC-domain transcription factor most closely related to 650 

the VNDs, which also displayed expression during secondary growth, did not show 651 

interaction with the HD-ZIP promoters tested. Thus, despite the ca 300 million years of 652 

separate evolution molecular circuits connecting HD-ZIP III’s and NACs may be at least 653 

partially conserved. It will be interesting to learn if the HD-ZIP III’s are also important for 654 

conifer tracheid formation. 655 

 656 

9. Perspectives and outlook 657 

While clearly a considerable amount is now known about the roles that HD-ZIP III’s play in 658 

multiple aspects of vascular development, there are still a number of unanswered questions, 659 
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in particular pertaining to the apparently very complex loops of regulation these factors act 660 

in. Omics based methods such as transcriptome analyses, Chip-seq, together with high 661 

throughput interaction screening using YIH, have revealed a complex transcriptional network 662 

around these factors. Furthermore, despite the apparent redundancy these five factors display 663 

in certain genetic analyses, they act sometimes antagonistically, and the molecular basis for 664 

this will likely continue to be revealed by large scale approaches. However, it is conceivable, 665 

or even likely, that different cellular, tissue and organ contexts provide opportunities for 666 

different positions in molecular networks of the five family members. Therefore, 667 

improvements in techniques for cellular and tissue resolution of large scale omics assays, in 668 

methods for determining molecular interactions, and in modelling of both networks and 669 

development, are promising. To complicate the image further the HD-ZIP III’s are, as 670 

mentioned, also regulated post-transcriptionally by miRNA providing additional levels of 671 

complexity. In addition, HD-ZIP III protein activity is most likely closely regulated as well; 672 

the presence of the highly conserved START domain strongly suggests interactions with an 673 

as of yet unidentified ligand. Furthermore, the C-terminus is occupied by a conserved 674 

domain, the MEHKLA domain, displaying similarity to Per Arnt Sim (PAS)-domains known 675 

to sense light, redox or other stimuli (Mukherjee and Burglin, 2006). Thus far its function is 676 

not clear: the MEHKLA domain has been shown to be a site for protein-protein interactions 677 

(Chandler et al., 2007), alternative folding of this domain regulates REV activity (Magnani 678 

and Barton, 2011) and a point mutation in the MEHKLA domain of the hoc allele of CNA 679 

confer high regeneration competence, even in the absence of hormones (Duclercq et al., 680 

2011). Intriguingly, whereas the MEHKLA domain might be redox sensitive, DNA binding 681 

of HD-ZIP III’s can also be redox regulated (Comelli and Gonzalez, 2007; Xie et al., 2014). 682 

Considering that HD-ZIP III transcription factors appear active in the plant vasculature after 683 

its development programme is complete, it is tempting to speculate that these factors not only 684 

regulate the development of the vascular tissues, but also contribute to the function of the 685 

vasculature as an information highway, perhaps by transmitting information from one part of 686 

the plant to another.   687 

 688 

The HD-ZIP III-miR165/166 regulon is highly conserved, and found not only in vascular 689 

plants but in all land plants, including mosses and liverworts (Floyd and Bowman, 2006; 690 

Floyd et al., 2006; Prigge and Clark, 2006). Strikingly, a HD-ZIP III from the moss (i.e. 691 

prevascular) species Physcomitrella patens regulates moss leaf development, including the 692 

conducting tissues, and partially suppresses the Arabidopsis rev phenotype (Prigge and Clark, 693 
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2006; Yip et al., 2016). In early vascular plants, lycophytes and ferns, HD-ZIP III’s are 694 

associated with leaf development and procambium (Floyd and Bowman, 2006; Vasco et al., 695 

2016). It is conceivable that the HD-ZIP III-miR165/166 regulon evolved from an ancestral 696 

function in leaf patterning and growth to also govern vascular differentiation with secondary 697 

cell walls. Analyses of the molecular networks in which the moss and liverwort HD-ZIP III 698 

homologues act will likely contribute not only to our understanding of vascular plant 699 

evolution, but perhaps also to the function of the famous five in the complex processes of 700 

patterning and differentiation of vascular tissues in Arabidopsis, and other vascular plants.  701 
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Figure legends 

 

Figure 1. Vascular tissue formation within radialised leaves. 

Separation of incipient leaf primordium (I1) from apical meristem by cut ‘x’ (A) leads to loss 

of adaxial-abaxial leaf asymmetry (B) and amphicribal vascular tissue (C) with phloem 

surrounding xylem in Epilobium. Cut ‘y’ (A) represents the separation between meristem and 

initiating leaf performed by Sussex (1955) with similar results. P1, P2 and P3 denote leaf 

primordia formed by the meristem prior to the cut. phan mutant from Antirrhinum (E) with 

radialised vascular tissue similar to that described in (C), compared with that of a wild-type 

Antirrhinum leaf which demonstrates adaxial-abaxial asymmetry (D). Phenotype of phb-1d 

mutant with radially symmetric trumpet-shaped leaves (G, I) with amphivasal vascular tissue 

compared to wild type plants (F, H), in which xylem is restricted to the adaxial domain and 

phloem to the abaxial. (H, I) Toluidine blue stained cross sections of leaf petioles. Scale bars 

are 50 μm (D), 5 mm (F, G) and 20 μm (H, I). x, p, pa and ve are xylem, phloem, 

parenchyma, and ventral epidermis, respectively. (A-C) Reproduced from Snow & Snow 

(1959), with permission. (D-E) Reproduced from Waites & Hudson (1995), with permission. 

(F-I) Reproduced from McConnell & Barton (1995), with permission.  

 

Figure 2. HD-ZIP III transcription factors in the formation of leaf vasculature.  

HD-ZIP III members lie at the core of a signalling network that patterns and determines 

xylem identity in the adaxial domain of the leaf. The cartoon shows a cross section through a 

leaf vascular strand, with the network overlayed. The activity domains of the various factors 

are approximately indicated. Black arrows indicate positive and red blocked arrows negative 

interactions. 

 

Figure 3. Dominant HD-ZIP III alleles discussed in this review. 

(A) HD-ZIP III domain structure, with miRNA complementary site marked. Protein (upper) 

and nucleotide (lower) sequences from the different HD-ZIP III alleles are shown below. 

(B-D) Toluidine blue stained cross sections of vascular bundles from the inflorescence stems 

of wild type (B) which has xylem to the centre of the stem and phloem towards the outside, 

compared to that of rev-10d (C) where xylem surrounds the phloem. In plants expressing a 

version of REV harbouring silent point mutations in the miRNA target site (D; rev-δmiRNA) 

some vascular bundles (lower right in D) demonstrate similar phenotypes to rev-10d (C), 
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with xylem surrounding phloem. ph is phloem, xy is xylem, arrowheads point to xylem cells. 

(B-D) Reproduced from Emery et al. (2003) with permission. 

 

Figure 4. Root vascular patterning is mediated by cell-to-cell movement of miR165/166 

and interactions with auxin and cytokinin signalling.  

(A) Levels of HD-ZIP III transcription factors determine xylem cell type: In wild type (WT), 

central image, protoxylem (yellow arrowhead) form at the periphery of the xylem axis, and 

metaxylem (blue arrowhead) at the centre. In phb-7d, left image, ectopic metaxylem form in 

peripheral positions, while in the athb8 cna phb phv mutant all xylem differentiate as 

protoxylem. The confocal images display lignified xylem cells stained with basic fuchsin. (B) 

HD-ZIP III (primarily PHB) activity is focused to the central, metaxylem, domain of the 

stele, through SHR and SCR mediated production of miR165/166 in the endodermis and their 

subsequent movement into the stele. Solid arrow indicate direct activation, dashed arrow 

indicate cell-to-cell molecular movement. (C) Cartoon displaying a cross section of the 

central part of the Arabidopsis root, a few cells shootward of the vascular stem cells within 

the root apical meristem. The endodermis (pink) surrounds the stele with its pericycle 

(green), procambium (grey) and central xylem axis with protoxylem (orange) and metaxylem 

(blue) precursor cells. Overlayed is a network of interactions between the HD-ZIP III 

transcription factors and auxin and cytokinin signalling at multiple levels, as described in the 

text. The activity domains of the various factors are approximately indicated. Black arrows 

indicate positive and red blocked arrows negative interactions. 

 

Figure 5. Xylem phenotypes of rev-6 mutants in inflorescence stem. 

Transverse sections through inflorescence stem tissue of 5 weeks old wild type (WT) plants 

(A) and rev-6 (B). Phloroglucinol stains lignin, and is reduced in hand sections of rev-6 

compared to wild type (pink staining on left hand side panels). Toluidine blue stained 

sections with close-ups of the vascular bundles (right hand side panels). Xylem fibres that 

lack secondary cell walls are present in rev (B; arrowheads), but all fibres in wild type (A) 

have thick secondary cell walls. X indicates xylem, ph indicates phloem. Scale bars are 50 

μm.   

 

Figure 6. HD-ZIP III regulation of xylem specification and differentiation in stem.  

Co-action of the HD-ZIP III and hormonal (BR and auxin) signalling networks ensures 

maintenance of a balance between the procambial domain and the differentiating xylem 
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domain. The cartoon displays a cross section of a vascular bundle of the stem. Black arrows 

indicate positive and red blocked arrows negative interactions. 
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